TUNNELING OF MIXED DUMBBELLS IN Al-Zn
K. Hultman, J. Holder, A. Granato

To cite this version:
K. Hultman, J. Holder, A. Granato. TUNNELING OF MIXED DUMBBELLS IN Al-Zn. Journal de Physique Colloques, 1981, 42 (C5), pp.C5-753-C5-755. 10.1051/jphyscol:19815116. jpa-00220985

HAL Id: jpa-00220985
https://hal.archives-ouvertes.fr/jpa-00220985
Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
TUNNELING OF MIXED DUMBBELLS IN Al-Zn

K.L. Hultman, J. Holder and A.V. Granato

Department of Physics, Department of Geology and Materials Research Laboratory
University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A.

Abstract. - Evidence for the caged mixed dumbbell configuration for the interstitial impurity complex is obtained from the polarization and annealing dependence of the ultrasonic diaelastic and paraelastic response in irradiated aluminum with zinc impurities. From the temperature dependence of the relaxation time, it can be deduced that the complex tunnels between equivalent configurations.

We have irradiated specimens containing 0.5, 0.1, and 0.01 atomic percent of zinc in aluminum at 65 K. A defect with <111> symmetry is found at 103 K which anneals during the measurement, while another with <100> symmetry is found at 5 K which anneals at 135 K. The measurements for the 5 K peak provide the first strong experimental evidence for the theoretically much discussed and expected1 caged mixed dumbbell configuration illustrated in Fig. 1. In addition, the surprising

result is found that the defect tunnels between the equivalent states. The evidence for the mixed caged configuration arises mainly from the polarization dependence of the diaelastic and paraelastic ultrasonic response of the defect. A large diaelastic effect in C_{44}^{\perp} anneals with this defect, while the paraelastic response occurs entirely in the C' elastic constant, as would be expected for

Fig. 1: Schematic view of the mixed dumbbell configuration in the fcc lattice formed by an undersized impurity (open circle) and an atom of the host lattice (crosses). The dumbbell has six equivalent orientations along the <100> directions.
The evidence for tunneling is obtained by combining ultrasonic attenuation and velocity measurements at 10 and 30 Hz. It is easily shown that the ratio \(R\) of \(\Delta/\omega v \), where \(\Delta \) is the decrement, \(v \) is the ultrasonic velocity and \(\omega \) is the frequency, should be independent of \(\omega \) for a simple Debye relaxation. Once this test is satisfied, then the ratio \(R\) gives the temperature dependence of the relaxation time. The results of such a test are shown in Fig. 2 where \(R\) is found to be independent of \(\omega \). It is found that the test is satisfied for both

\[
\frac{A}{UAV} = \frac{\Delta}{\omega v},
\]

where \(A \) is the decrement, \(v \) is the ultrasonic velocity and \(\omega \) is the frequency. The results of such a test are shown in Fig. 2 where \(R\) is found to be independent of \(\omega \).

![Fig. 2: Relaxation time \(\tau \) derived from velocity and attenuation measurements on irradiated Al-Zn peak 1.](image)

0.1 and 0.5% Zn in Al. The relaxation time is found to be Arhenius at high temperature and independent of temperature between 2 and 4 K, providing strong evidence for tunneling of the complex. The low temperature increase of the decrement shown in Fig. 3 is not a second low temperature peak, but is just due to the expected increase of the relaxation strength while the relaxation time remains frozen.

Measurements have been made for 0.01% Zn in Al. These are more difficult because the background attenuation due to ultrasonic interaction with conduction electrons becomes very large at low temperature in this case.
Fig. 3: Annealing of peak in decrement of Al-0.1% Zn peak 1.

References

Supported in part by the U. S. Department of Energy under Contract DE-AC02-76ER01198.