TRAPPING OF SELF-INTERSTITIALS AT
OVERSIZED IMPURITIES IN Al-Mg AND Cu-In
AND UNDERSIZED IMPURITIES IN Al-Fe

G. Kollers, H. Jacques, L. Rehn, K.-H. Robrock

To cite this version:
G. Kollers, H. Jacques, L. Rehn, K.-H. Robrock. TRAPPING OF SELF-INTERSTITIALS AT
OVERSIZED IMPURITIES IN Al-Mg AND Cu-In AND UNDERSIZED IMPURITIES IN Al-Fe.
<jpa-00220981>

HAL Id: jpa-00220981
https://hal.archives-ouvertes.fr/jpa-00220981
Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
TRAPPING OF SELF-INTERSTITIALS AT OVERSIZED IMPURITIES IN Al-Mg AND Cu-In AND UNDERSIZED IMPURITIES IN Al-Fe

G. Kollers, H. Jacques, L.E. Rehn* and K.-H. Robrock

Institut für Festkörperforschung, Kernforschungsanlage Jülich, D-5170 Jülich, F.R.G.
*Argonne National Laboratory, Materials Science Division, Argonne, Illinois 60439, U.S.A.

Abstract. - Several IF-peaks have been observed in Al-0.04 at% Fe, Al-0.01 at% Mg and Cu-0.025 at% In after electron irradiations. These peaks can all be related to reorientation processes of point-defect complexes consisting of self-interstitial and impurity atoms. The activation energies and preexponential factors are found in a range which is characteristic for interstitial-atom jumps. The peak behaviour during thermal annealing treatments reveal the trapping-strength of impurity atoms for migrating self-interstitial-atoms.

Introduction. - Trapping of migrating self-interstitials (S) at impurity atoms (I) is frequently observed in alloys under irradiation /1/. It results in the formation of so-called SI-complexes which are agglomerates of one or more S and one or more I.

The formation and properties of SI-complexes have attracted considerable attention in the past and many alloys have been studied.

The present IF-studies on Cu-In have been initiated because of a controversy which arose in the interpretation of damage rate studies /2/ and Perturbed Angular Correlation-studies /3/ on the same alloy namely about the question after the thermal stability of the SI-complexes in Cu-In.

A further aim of the present work was to compare the results on Cu-In with analogous IF-results on Al-Mg and Al-Fe. It was thought that this might give insight into the range of validity of theoretical models developed recently /4,5/.

Experimental. - Cu samples containing 250 atppm In and Al samples containing 125 atppm Mg and 400 atppm Fe, respectively, have been irradiated at 4.5K with 3 MeV electrons at the low temperature irradiation facility of KFA Jülich. The subsequent internal friction measurements of Al-Fe and Al-Mg were carried out in a low frequency torsion pendulum, the measurements on Cu-In in a vibrating reed apparatus. The defect concentrations introduced by the irradiation were monitored by simultaneously irradiated resistivity samples.

Results. - Six IF-peaks were observed in Cu-In, five in Al-Mg and six peaks in Al-Fe. The characteristics of these peaks are summarised in table 1, except for two of them in Al-Fe, which were too small in order to be analyzed in greater detail.
Table 1 shows the peak temperature, T_p, at about 80 Hz, the activation energy, H_R, for the reorientation and the preexponential of the relaxation time, τ_0. Practically all of the values listed in table 1 fall in a range which is typical for reorientation jumps of single or multiple self-interstitials /6,7,8/.

Of particular interest is the annealing behaviour of the IF-peaks, because they directly reflect the formation- and annihilation processes of the various individual SI-complexes present in the samples. The results are shown in fig. 1, where the peak heights normalized to their maximum height, Q_0^{-1}, obtained during the tempering treatment are plotted as a function of the tempering temperatures.

Discussion:
1. Peak characteristics: The peaks characterized in table 1 are only observed in the specified alloys and not in pure Al or pure Cu. Therefore the peaks have to be attributed to the stress induced reorientation of SI-complexes. Of particular interest in respect to the peak characteristics are the two peaks occurring below 10K in Al-Fe and Cu-In. The atomic jump mechanism underlying the 8K-peak in Al-Fe is described in detail in another contribution to this conference /8/. There it is shown, that the peak results from a motion of an interstitial-Fe-atom like in a cage inside a unit cell of the fcc lattice. A specific model for the low temperature peak observed in Cu-In has not yet been developed.
2.) Number of IF-peak: The number of IF-peaks observed in each of the three different samples is apparently large inspite of the small S- and I-concentrations in the samples. This multiplicity may have two different origins: (i) One given defect type may give rise to more than one IF-peaks via different relaxation modes. An example of this is the pair of the 8K and 22K peak in Al-Fe /8/. (ii) Several different SI-complexes may be present in the sample. These two cases may be distinguished from each other from the annealing behaviour of the peaks: If peaks are being formed or disappear at different annealing temperatures, they must as a necessity be attributed to different types of SI-complexes. With this criterion, in Al-Fe at least three different SI-complexes have been observed, at least two in Al-Mg and at least five in Cu-In, as can be seen from fig. 1. For Cu-In it has been shown that this observation can be explained by a SI-complex ensemble, which consists of differently large SI-complexes, namely complexes containing from one to five S bound at one I-atom /9/. A similar defect ensemble may also account for the several peaks observed in Al-Fe and Al-Mg.

3.) Binding energies: The most stable SI-complexes disappear in Al-Mg and Cu-In at annealing temperatures of about 150K. In accordance with the interpretation of damage rate measurements on Al-Mg /10/ and Cu-In /2/ this recovery is attributed to dissociation process of the most stable SI-complexes. If this assignment is correct, binding energies of about 0.35 eV can be deduced for these complexes /1/.

The SI-complexes in Al-Fe are much more stable. They remain in the sample up to about 200K, where they are annihilated by migrating vacancies (stage III). Therefore
only a lower limit for the binding- or for the migration energies of these SI-complexes can be given which is 0.5 eV/1/.

4.) Comparison with theory: So far there is only one model available which accounts for the differences in trapping properties of different solute atoms in terms of a simple physical parameter. This parameter is the so-called volume misfit, δ, which is the relative relaxation volume of the I in solution. If $\delta > 0$, solutes are called oversized and if $\delta < 0$, undersized.

In accordance with what is expected from the model it has been found in several cases that undersized I settle down into interstitial sites upon trapping a S /1/. In fig. 2a a configuration is shown where there are 24 equivalent sites for the interstitial I establishing a cage in which the I-atom jumps around. This is only one example of many /8/, which explains the occurrence of IF-peaks from undersized solute atoms having trapped a self-interstitial atom.

If oversized I encounter a Fig. 2: (a) Cage model of a SI-complex containing an undersized solute atom. (b) Jump model which explains jumps of self-interstitial dumbbells around an oversized impurity atom.

Conclusions.- In each of the three irradiated alloys, Al-Fe, Al-Mg and Cu-In an ensemble of differently structured self-interstitial-impurity atom complexes exists. This means that even at a low concentration ratio of $c_S/c_I \approx 0.1 \ldots 0.2$ not only one dominant defect is being formed but a distribution of various SI-complexes. The trapping strength may be different for different I, i.e. final detrapping occurs in Cu-In at 140K, in Al-Mg at 160K and beyond 200K in Al-Fe.
References

/2/ Selke, J., Diploma Thesis, 1976, Technical University, RWTH Aachen, to be published

/3/ Deicher, M., Minde, R., Recknagel, E. and Wichert, Th., V. Int. Conf. on Hyperfine Interactions, Berlin, 1980

/7/ Robrock, K.-H. and Schober, H.R., to be published

/8/ Robrock, K.-H. and Schober, H.R., this conference

/10/ Dworschak, F., Monsau, Th. and Wollenberger, H., J. Phys. F: Metal Phys. 6 (1976), 2207-2218