NOVEL PROPERTIES OF AMORPHOUS TRANSITION METAL SULFIDES
R. Chianelli

To cite this version:
R. Chianelli. NOVEL PROPERTIES OF AMORPHOUS TRANSITION METAL SULFIDES. Journal de Physique Colloques, 1981, 42 (C4), pp.C4-1172-C4-1172. <10.1051/jphyscol:19814248>. <jpa-00220880>

HAL Id: jpa-00220880
https://hal.archives-ouvertes.fr/jpa-00220880
Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
NOVEL PROPERTIES OF AMORPHOUS TRANSITION METAL SULFIDES

R. Chianelli

Exxon Research & Engineering Co., Linden, NJ, U.S.A.

Abstract.—Crystalline chalcogenides of transition metals of groups IV-VI B (Ti, Zr, Hf, V, Nb, Ta, Mo, W) occur with layer-like structures for the MX₂ stoichiometry and with chain-like structures for the MX₄ stoichiometry. Recently, amorphous analogs of these compounds have been obtained by low temperature precipitation from non-aqueous solutions and/or by chemical reaction and thermal decomposition of chalcogen containing salts. The properties of these amorphous sulfides are often strikingly different from their crystalline counterparts where they exist. These novel properties make these materials potentially useful in energy related areas. In this paper we discuss the preparation, characterization, structure and properties of this class of materials /1/. We shall also discuss electrochemical studies which have indicated that amorphous MoS₂ is an attractive electrode material for high energy density secondary battery systems. Experimental results of amorphous LiₓMoS₃ (0 ≤ x ≤ 4) using X-ray RDF, EXAFS, XPS, and magnetic susceptibility measurements will be presented. Mechanism of Li intercalation into MoS₃ will be discussed.

Reference