ANNEALING AND HYDROGENATION BEHAVIOUR OF EVAPORATED AND SPUTTERED HIGH-PURITY AMORPHOUS SILICON FILMS

N. Kniffler, W. Müller, J. Pirrung, N. Hänisch, B. Schröder, J. Geiger

To cite this version:

HAL Id: jpa-00220803
https://hal.archives-ouvertes.fr/jpa-00220803
Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ANNEALING AND HYDROGENATION BEHAVIOUR OF EVAPORATED AND SPUTTERED HIGH-PURITY AMORPHOUS SILICON FILMS

N. Kniffler, W.W. Müller, J.M. Pirrung, N. Hänisch, B. Schröder and J. Geiger

Fachbereich Physik, Universität Kaiserslautern, F.R.G.

Abstract.- Amorphous silicon films have been prepared by ultra-clean evaporation and sputter technique enclosing different amounts of hydrogen into the films. The dark conductivity of both types of films can be reduced from 10^{-2} $(\Omega \cdot cm)^{-1}$ as deposited to values smaller than 4×10^{-11} $(\Omega \cdot cm)^{-1}$ if the films contain enough hydrogen and are annealed to about 600 K. Close to the annealing minimum of the dark conductivity a maximum of photoconductivity is observed.

Introduction.- It is well known that the incorporation of hydrogen into amorphous silicon films drastically reduces the concentration of the dangling bond states and makes an efficient doping of the material feasible. While a-Si films prepared by glow discharge (gd) decomposition of silane always contains sufficiently hydrogen, for the other a-Si preparation techniques a hydrogenation of the films has to be provided separately. First Paul et al. /1/ produced films which can be doped by reactive sputtering in a hydrogen-argon mixture. Other authors /2,3/ reported about a subsequent hydrogenation by heat diffusion of atomic hydrogen into the film. Miller et al. /4/ added atomic hydrogen during the evaporation process and were able to reduce the room temperature dark conductivity σ_D from 10^{-4} to 10^{-9} $(\Omega \cdot cm)^{-1}$ after a heat treatment. In a previous paper /5/ we already pointed out that structural relaxation processes in ultra-clean a-Si films may diminish the density of the dangling bond states considerably. We did not succeed, however, hitherto to reduce σ_D at room temperature much below 10^{-7} $(\Omega \cdot cm)^{-1}$.

In this paper we present measurements on a-Si films evaporated in a molecular hydrogen beam, where the hydrogenation takes place during evaporation and in a following annealing treatment. The hydrogenation and annealing behaviour of these films are compared with those prepared by reactive sputtering.

Experimental procedures.- The a-Si films are prepared in UHV based evaporation and sputter equipments. The evaporation system consists of two separated chambers for the e-gun source and for the substrate, respectively. A residual gas pressure of less than 10^{-9} torr could be maintained during evaporation with a rate of approximately 4 \AA/s. Substrate heat treatment was possible between 10 K and 800 K as well as in-situ dark conductivity measurements. A molecular hydrogen beam collimated by a multichannel nozzle could be directed to the substrate. Much care has been taken to avoid any contamination of the substrate and of the system by the gas inlet system. For the UHV sputter system a commercial rf sputter gun was converted into an UHV compatible version. An Ar or H$_2$ partial pressure up to 10^{-3} torr could be admitted without altering the residual gas background for more than a factor of two. Sputter rates of 1-4 \AA/s at a distance of 25 cm are obtained by using an Ar working pressure of about 10^{-3} torr.

Photoconductivity, thermoelectric power, and ir absorption measurements could be carried out in separate systems.
Results and discussion.- The room temperature dark conductivity is shown in Fig. 1 for various a-Si films as a function of the annealing temperatures T_A.

Fig. 1: Room temperature dark conductivity for typical amorphous silicon films prepared by evaporation or sputter technique as a function of the annealing temperature. T_S is the substrate temperature during preparation of the films, P_{H_2} is the effective partial hydrogen pressure, p_0 the residual gas pressure (without H_2 and Ar) during evaporation or sputtering.

The uppermost curve of Fig. 1 represents the typical annealing behaviour of "not as clean" films prepared by sputter or evaporation technique without hydrogen. The curve beneath shows the reduction of σ_D for annealing temperatures up to 600 K, caused by relaxation processes in the clean film. Two facts could not really be cleared up for this film: First, the conductivity minimum around $T_A = 600$ K might be deeper. The experimental data are too scarce in this temperature range. Second, it is still open, whether the conductivity minimum is only due to relaxation processes between silicon atoms themselves, or the very low hydrogen background in these films is already capable to passivate a considerable part of the defect states. Under the same preparation condition an effective partial hydrogen pressure of 2×10^{-6} torr is already sufficient to move the σ_D-minimum below 10^{-9} (n\cdotcm)$^{-1}$. σ_D values as low as 3×10^{-11} (n\cdotcm)$^{-1}$ can be achieved by increasing the effective hydrogen pressure to 10^{-6} torr. This value almost reaches the $\sigma_D = 10^{-12}$ (n\cdotcm)$^{-1}$ minimum obtained by reactive sputtering in an Ar + H_2 mixture.

The strong decrease of σ_D of in hydrogen evaporated samples is attributed to an activation of the molecular hydrogen, that is dissociated and saturates the dangling bonds of silicon, combined with structural relaxation. Fig. 2 shows the content of 'activated' hydrogen measured by the optical absorption of the Si-H wagging vibration at 640 cm$^{-1}$ following Fang et al. /6/.

Fig. 2: Hydrogen concentration of 'activated' hydrogen in an evaporated a-Si sample as a function of the annealing temperature. The concentration was determined by ir absorption of the wagging vibrational band.

According to Fig. 2 a certain amount of hydrogen is already bound in the freshly evaporated a-Si film. With increasing annealing temperature the concentration of active hydrogen first increases. It reaches a maximum with 0.75% at 500 K, at 600 K the hydrogen concentration drops to about 0.6%. The minimum of σ_D is always observed around 600 K. At this temperature, which is also favourable for the preparation of...
gd-a-Si samples, a structural change may take place, as proposed by Mattes /7/ with the help of a cluster model. At higher annealing temperatures σ_D at room temperature rises rapidly for hydrogenated and non-hydrogenated samples. This rise may be attributed to the loss of hydrogen and simultaneously to a regeneration of defects. The thermo-electric power becomes larger and negative, what indicates a shift of the Fermi level toward the conduction band. If the regeneration of defects is responsible for the rise of σ_D for $T_A > 600$ K at all, the regenerated defect distribution can not be symmetrically to the midgap.

The temperature dependence of the dark conductivity σ_D presented in Fig. 3 with T_A as parameters shows that variable range hopping transport is dominating for low T_A values at low and moderate temperatures, while activated transport in extended states takes place for $T_A \sim 600$ K (activation energy $E_A \sim 0.8$ eV for curve 4) and at high temperatures.

Fig. 3: Temperature dependence of the dark conductivity of an a-Si film evaporated in hydrogen for different annealing temperatures T_A.

A comparison of the annealing behaviour of the dark and photoconductivity of evaporated and sputtered a-Si films in Fig. 4 shows that minimal values of σ_D almost correlate with maximal values of σ_{Ph}. The two maxima of σ_{Ph} occurring in either cases may be due to two different photconduction pathes. The photoconductivity reported here is not as high as obtained in gd-prepared /8/ and sputtered /9/ samples by other authors. An optimization of the photoconductivity is still to be carried out.

Finally, Fig. 5 illustrates the decrease of the room temperature conductivity σ_D with increasing hydrogen partial pressure.

Fig. 4: The annealing behaviour of the photoconductivity σ_{Ph} (illumination with $\lambda = 633$ nm, 2 mW/cm², 6×10^{15} photons·cm⁻²·s⁻¹) of evaporated and rf-sputtered a-Si films with high hydrogen partial pressure compared to the variation of the dark conductivity σ_D measured at room temperature.

Fig. 5: Temperature dependence of the dark conductivity σ_D of gd-a-Si samples at room temperature. The temperature dependence of the dark conductivity σ_D is shown after annealing to different temperatures.
Fig. 5: Room temperature dark conductivity versus partial hydrogen pressure for a-Si samples prepared by rf-sputtering (p_0 is the residual gas pressure except p_{Ar} and p_{H_2}).

Conclusion.- An effective hydrogenation of a-Si-films is possible by ultra-clean evaporation technique in a H_2 beam and subsequent annealing to 600 K similar as by reactive sputter technique. Dark conductivity values as low as $3 \times 10^{-11} \, (\Omega \text{cm})^{-1}$ for evaporation and $10^{-12} \, (\Omega \text{cm})^{-1}$ for sputtering are correlated with a maximum of photoconductivity.

Acknowledgement.- The authors would like to thank the Bundesministerium für Forschung und Technologie for the financial support.

References

/8/ PLATTNER R.D., KRÖHLER W.W., Statusbericht Sonnenenergie, Bundeministerium für Forschung und Technologie, VDI Verlag 1980, S. 943