TEMPERATURE DEPENDENCE OF THE HOPPING HALL MOBILITY IN SPATIALLY AND ENERGETICALLY DISORDERED SYSTEMS

M. Grünewald, H. Müller, P. Thomas, D. Würtz

To cite this version:

HAL Id: jpa-00220794
https://hal.archives-ouvertes.fr/jpa-00220794
Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
TEMPERATURE DEPENDENCE OF THE HOPPING HALL MOBILITY IN SPATIALLY AND ENERGETICALLY DISORDERED SYSTEMS

M. Grunewald, H. Müller, P. Thomas and D. Würtz
Fachbereich Physik, Universität Marburg, P.R.G.

Abstract.- We present an averaging procedure for the calculation of the Hall mobility for spatial and energetical disordered hopping systems in the framework of percolation theory. For a constant density of states function the temperature dependence of the Hall mobility follows a $T^{-1/4}$ law with a slope which is by a factor of about 8/3 smaller than that of the conductivity. The comparison with the self consistent Random Walk Theory of transport yields qualitatively the same results.

Introduction.- We consider hopping transport in model systems where sites are randomly distributed in space and site energies are distributed according to a given density of states function $N(E)$. The elementary process governing the Hall Effect is assumed to be the three site interference process due to Holstein. The model we consider for the calculation of the DC-Hall-mobility μ_H was introduced by Böttger and Bryskin (BB) and Friedman and Pollak (FP). The problem of R-hopping conduction (no energy fluctuations), they tackle, was transformed into the calculation of the average transverse current which develops in the equivalent random resistor network with extrinsic currents. In the spirit of percolation theory the average has then been performed in different ways over the percolation path and the results for μ_H of BB and FP were quite different. On the other hand, Movaghar et al. derived an expression for the conductivity in disordered systems starting from a completely different point of view, namely the microscopic description of a random walk. Movaghar, Pohlmann and Würtz extended this theory to yield the transverse conductivity. They showed that the random walk expression for μ_H in the low density regime is quite close to that one found by BB. They have the same dependence on the site density and differ only by a constant prefactor of about 30. But one should remember that in percolation theory it is somewhat difficult to calculate prefactors. The different approaches and results are discussed in detail in ref. 5.

The models so far considered deal with the so called R-hopping problem where only spatial disorder is present. In this paper we follow the work of BB but we allow for fluctuations in the site energies as well. In the framework of percolation theory we present an averaging procedure to calculate the Hall mobility for a given density of states function. The basic formalism for calculating the Hall mobility is given, in more detail in ref. 6. As an example for systems including energy fluctuations we consider a constant density of states, yielding Mott's law for the conductivity $\sigma_{xx} = -(T_0^2/T)^{1/4}$. For μ_H we find $\mu_H/\mu_{DC} = -(T_0^2/T)^{1/4}$ with $T_0 \approx 1. T_0$. The magnitude of μ_H is rather small ($\approx 10^{-10}$ cm²/Vs) if parameters characteristic for hopping near the Fermi level in amorphous semiconductors are chosen.

The conductivity σ_{xx}.- As shown by Miller and Abrahams, the problem of DC-hopping conduction is equivalent to the calculation of the conductivity of a resistor network. The impedances of this network Z_{ij} are determined by the two site thermal equilibrium jump rate Γ_{ij} between sites i and j.

$$Z_{ij}^{-1} = e^2 F \Gamma_{ij} = e^2 F v_{20} e^{-2ar_{ij}} \Delta_{ij} \quad (1)$$

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981417
where v_{20} is a frequency prefactor and a^{-1} the decay length of the localized states. Percolation theory is based on the concept that nearly all of the current is carried by a critical path (or a system of critical paths), the conductivity of which is determined essentially by the largest impedance on this path (or on a section of it). This critical impedance will be written in terms of a critical exponent ξ/kT as

$$\frac{1}{Z_c} = \frac{2}{2\theta} \cdot v_{20} \cdot e^{-\xi/kT}. \quad (3)$$

The conductivity of the whole system is then approximately

$$\sigma_{xx} \approx g^{-1} \cdot \frac{1}{L}, \quad (4)$$

where the characteristic length L cannot be determined by percolation theory alone. It can roughly be taken as the separation of sites where critical paths intersect. The critical path is formed by impedances all smaller than Z_c. The number $n(E_i, \xi)$ of such impedances linked to a given site i with energy E_i is obtained by integrating over the volume of the "cone capped cylinders",

$$n(E_i, \xi) = \frac{4\pi}{3} \int dE_j \ N(E_j) \ x^3(E_i, E_j) \quad (5)$$

with

$$x(E_i, E_j) = \frac{\theta}{2\theta} (\xi - \frac{1}{2} (|E_i| + |E_j| + |E_i - E_j|)). \quad (6)$$

Percolation sets in if the average number of bonds per site is equal to

$$\nu_c = <n(E_i, \xi)>_c \quad (7)$$

with percolation number $\nu_c = 2.7^{11}$. $<...>_c$ means averaging over the path which is done by multiplying with

$$n(E_i, \xi) \cdot N(E_i) / \int dE \ n(E, \xi) \ N(E) \quad (8)$$

and integrating over $E_i^{9,10}$. For constant $N(E) = N_o$ we obtain via eqs. (5), (7), (3), and (4) the famous Mott law

$$\ln \sigma_{xx} \sim \xi \beta = \frac{\tau_0}{T}^{1/4} \quad (9)$$

with

$$\tau_0^{1/4} = 2 \cdot (\frac{3}{kN_o})^{1/4}. \quad (10)$$

The Hall conductivity, σ_{xy} and Hall mobility μ_H result if higher order jump-processes are considered where one or more intermediate sites are involved. So the Hall effect is due to at least three-site hops at triads within the system of percolation paths. On the basis of this model (BB) obtain for the transverse conductivity σ_{xy} (with the magnetic field H being in z-direction)

$$\sigma_{xy} = e^2 \beta \sigma_{xx} L \left(<\Delta W_{ijp}^H \ Z_{pi}^Z \ Z_{pj}^Z \ Z_{ji}^Z>^c \right) \quad (11)$$

The brackets $<...>_c$ denote the average over all possible spatial and energetical paths. ΔW_{ijp}^H is the magnetic field dependent part of the three site transition rate.
with the intermediate site p, given by Holstein. For small electron-phonon coupling

$$
\Delta W_{ipj}^H = v_{30} e^\frac{\hbar}{\hbar} |A_{ipj}^Z| \cdot e^{-a(r_ip+r_pj+r_{ji})} \cdot \Delta_{ipj},
$$

(12)

\[\Delta_{ipj} = \frac{1}{3} \left[e^3|E_1| \Delta_j A_{ipj}^p + e^3|E_p| \Delta_i A_{pjp}^p + e^3|E_j| \Delta_p A_{jip}^p \right] \]

where v_{30} is a frequency prefactor and A_{ipj}^Z is the projection in the Z-plane of the vector area spanned by the triad (ipj). Inserting eqs. (12), (4), and (1) with (2) into eq. (11) and dividing by $E_{ixx}H$ we obtain the Hall mobility μ_H

$$
\mu_H = \sigma_{xy} \frac{\sigma_{xx} H}{\sigma_{xx}} = \frac{v_{30} e^{-\alpha(r_ip+r_pj+r_{ji})}}{v_{20} \hbar^2 Z} \left(e^{-2a(r_{ij}+r_{ip}+r_{ji})} \Delta_{ipj} + e^{-2a(r_ip+r_pj)} \Delta_{ipj}^p + e^{-2a(r_{pi}+r_{ji})} \Delta_{pjp} \right)
$$

(13)

The configurational average $\langle \ldots \rangle_c$ is performed as

$$
\langle f(r_i, r_p, r_j ; E_i, E_p, E_j) \rangle_c = \frac{\int dE_n(E_i, E_p, E_j) f(r_i, r_p, r_j ; E_i, E_p, E_j) dE_n(E_i, E_p, E_j) dE_n(E_j, E_p, E_j) dE_n(E_i, E_p, E_j) dE_n(E_j, E_p, E_j) dE_n(E_i, E_p, E_j) dE_n(E_j, E_p, E_j) \Delta_i \Delta_j \Delta_p}{\int dE_n(E_i, E_p, E_j) dE_n(E_i, E_p, E_j) dE_n(E_j, E_p, E_j) dE_n(E_i, E_p, E_j) dE_n(E_j, E_p, E_j) dE_n(E_i, E_p, E_j) dE_n(E_j, E_p, E_j) \Delta_i \Delta_j \Delta_p}
$$

(14)

with the restrictions $E_m \leq \xi$ and $r_{mn} \leq \frac{\sqrt{2}a}{2\alpha} (\xi - \frac{1}{2} (|E_m| + |E_n| + |E_m - E_n|))$.

The temperature dependence of μ_H may be deduced approximately by the following argument. The main contribution to μ_H is due to equilateral triangles with sides of length $<R>$ and site energies $<E>_c$ related to the critical exponent ξ by

$$
\xi = 2a <R> + 8 <R> = 15
$$

(15)

The mean critical quantities $<R>_c$ and $<E>_c$ are obtained from the averaging procedure as prescribed by eq. (8) but taking care that always eq. (15) is fulfilled. We obtain for $<R>_c$

$$
\alpha <R>_c = \frac{3}{8} \left(\frac{T_0}{T} \right)^{1/4}
$$

(16)

which is identical to the average hopping distance obtained from the simple "Mott-optimization". Thus the Hall mobility μ_H from eq. (13) results in

$$
\mu_H \approx e^{-\frac{\xi}{8}} \cdot e^{\alpha <R>_c + \beta <E>_c} = e^{-\frac{\xi}{8}} \cdot e^{\alpha <R>_c + \beta <E>_c} = e^{-\frac{3}{8} \left(\frac{T_0}{T} \right)^{1/4}} = e^{-\frac{\xi}{8} \left(\frac{T_0}{T} \right)^{1/4}}
$$

(17)

μ_H follows a $(T_0/T)^{1/4}$-law where T_0 is the T_0 appearing in the conductivity eq. (9) reduced by a factor of ≈ 50. This result is confirmed by a direct numerical calculation of eq. (14) using Monte Carlo integration techniques. Fig. 1 shows the numerical results for log μ_H vs. $(T_0/T)^{1/4}$ for a constant density of states $N(E) = N_0$. The slope in this plot is indeed $= 3/8$ and the value of μ_H is very small. For the following parameters $v_{30}/v_{20} = 0.1$ (FP), $a^{-1} = 10$, $N = 10^{15}$ cm$^{-3}$ eV, we obtain for the prefactor $v_0 = \frac{v_{30}}{v_{20}} \cdot \frac{e^{\alpha}}{\hbar^2} = 2$ cm2/Vs. Setting $T = 300 K$ we compute via eq. (16) $(T_0/T)^{1/4} = 16$ and with Fig. 1 the Hall mobility μ_H to

$$
\mu_H = 10^{-4} \text{ cm}^2/\text{Vs}
$$

(18)

We remark in agreement with (BB) that there is an uncertainty in the preexponential factors of the conductivity σ_{xx} and Hall conductivity σ_{xy} because in percolation theory there exists no unambiguous scheme for calculating prefactors. If one is interested in the correct prefactors one should use the more sophisticated
random walk theory4,5. The Random Walk Theory formulated for the Hall effect in the R-hopping problem3 can also easily be extended to the case of variable range hopping. The averaging procedure over all spatial and energetical coordinates of the system is somewhat more difficult from the numerical point of view. First numerical results show in the low temperature and low density regime the same qualitative behaviour (\(T^{-1/4}\)-law) as obtained by the percolation theory described in this paper.

We have presented an averaging procedure for the Hall mobility for spatial and energetical disordered hopping systems in the framework of percolation theory. The treatment applied in this paper is based on a model of the Hall effect where three site processes dominate and where the transition rates are describable by eq. (1), e.g. due to s-like wavefunctions. For a constant density of states model the absolute value of the Hall mobility \(\mu_h\) is quite sensitive to the value of \(T_0/T\). The temperature dependence of \(\mu_h\) follows a \(T^{-1/4}\)-law with a slope which is approximately by a factor 8/3 smaller than that of the conductivity.

1. HOLSTEIN T., Phys.Rev. 124 (1961) 1329
2. BÖTTGER H., BRYKSIN V., phys.stat.sol. (b) 80 (1977) 569
4. MOVAGHAR B., FOHLMANN B., SAUER G.W., phys.stat.sol. (b) 97 (1980) 533;
5. MOVAGHAR B., FOHLMANN B., WÜRTZ D., J. of Phys. C (in press)
7. MILLER A., ABRAHAMS E., Phys.Rev. 120 (1960) 745
10. OVERHOP H., phys.stat.sol. (b) 67 (1975) 709