TANDEM TYPE SOLAR CELLS USING a-Si: H AND a-SiGe: H FILMS

G. Nakamura, K. Sato, H. Kondo, Y. Yukimoto, K. Shirahata

To cite this version:

G. Nakamura, K. Sato, H. Kondo, Y. Yukimoto, K. Shirahata. TANDEM TYPE SOLAR CELLS USING a-Si: H AND a-SiGe: H FILMS. Journal de Physique Colloques, 1981, 42 (C4), pp.C4-483-C4-486. <10.1051/jphyscol:19814102>. <jpa-00220717>

HAL Id: jpa-00220717
https://hal.archives-ouvertes.fr/jpa-00220717
Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
TANDEM TYPE SOLAR CELLS USING a-Si:H AND a-SiGe:H FILMS

G. Nakamura, K. Sato, H. Kondo, Y. Yukimoto and K. Shirahata

LSI Research and Development Laboratory, Mitsubishi Electric Corp., 4-1 Mizuhara, Itami 664, Hyogo, Japan

Abstract - Tandem type solar cells with a-Si:H and a-SiGe:H and inverted p-i-n type solar cells of a-Si:H are studied for increasing efficiency and improvement in photoconductivity of a-SiGe:H is also studied.

Introduction - Conversion efficiency of a-Si:H p-i-n solar cell is presently limited because minority carrier collection length is much shorter than the solar absorption length and because the spectral response is restricted to a very narrow region by the low optical gap in p-type region and high optical gap in i-type region.

Here, we study two types of cell structures to widen the spectral response region. The first is a tandem structure using a-Si:H and a-SiGe:H which has high collection efficiency in long wave region. The second is an inverted p-i-n structure using a-Si:H which has high collection efficiency in short wave region.

In this paper, we study to improve photoconductivity of a-SiGe:H for increasing efficiency of the tandem cells. Performance of both tandem cells and inverted p-i-n cells using various optical gap energies and with various film thickness are investigated for optimizing cell structure.

Experimental - Deposition of a-SiGe:H films was carried out by a rf glow discharge decomposition of SiH4 and GeH4 mixture gas in a capacitive coupling equipment with parallel plate electrodes. Rf power ranging from 10W to 100W at 13.56MHz was fed to one electrode. Another electrode, on which substrates were placed, was grounded or connected to a DC power supply and which was heated during film deposition.

The reaction chamber was first evacuated to the pressure of 1x10⁻⁶ Torr and then SiH4 diluted with argon to 10% and GeH4 diluted with hydrogen to 10% were introduced through each mass flow controller. The mixture ratio of GeH4 to (GeH4 +SiH4) was controlled in the range from 0 to 1.

Dark and photoconductivity of a-SiGe:H films were measured using gap type electrode with 7.5 cm in width and 6-10 μm in length. Transmission and reflection spectra of the films in visible region were measured for evaluating optical gap energy of the films.

Tandem type solar cells and inverted type solar cells were fabricated by the same manner as mentioned previously. Current-voltage characteristics and collection efficiency of the solar cells were measured.

Improvement in photoconductivity of a-SiGe:H - Fig.1 shows a relation between conductivity of a-SiGe:H and glow discharge power with optical gap energy as a parameter. When the glow discharge power increased from 10W to 100W, photoconductivity (σph) increased by 2 orders of magnitude and darkconductivity (σd) increased by 3 orders of magnitude.

W. Paul reported that hydrogen attached preferentially to Si rather than to Ge and that defects connected to Ge degraded photo-electric
properties of a-SiGe:H with high Ge content. G. Turban et al. reported that atomic hydrogen was believed to interfere with the growing film and might modify the film itself, especially for long residence time (low gas flow rate) and high concentration (high discharge power). They also reported that the ratio H/Si in a-Si:H increased when discharge power was increased. According to the authors, the experimental result, shown in Fig. 1, implies that the interference of atomic hydrogen with the growing a-SiGe:H causes to compensate the defects due to Ge.

Fig. 2 shows a relation between conductivity of a-SiGe:H and substrate temperature with glow discharge power and GeH₄ mol% as parameters. σ_{ph} reached maximum at about 200°C-250°C and it decreased drastically above 300°C. These temperature are nearly equal to the temperature at which weak-bonded hydrogen in a-SiGe:H evolves.

Fig. 3 shows a relation between conductivity of a-SiGe:H and optical gap energy (E_{gopt}) of the films which are prepared following condition. σ_{d} increased by 2 orders of magnitude when E_{gopt} decreased from 1.8eV to 1.35eV. On the other hand, σ_{ph} showed almost constant value ($10^{-4} - 10^{-5}$ (Ω·cm)$^{-1}$) and which was nearly equal to that of a-Si:H. Degradation in σ_{ph} with the addition of Ge was eliminated by depositing at high discharge power (50W-100W) and low substrate temperature (200°C).

Fig. 4 shows a relation between the activation energy (E_a) of dark conductivity and E_{gopt}. For comparison, data of a-SiGe:H, deposited at low discharge power (10W) and at high substrate temperature (300°C), are also presented in the figure (depicted "poor"). When E_{gopt} was the same, E_a obtained in this work was higher than that of "poor". This result implied that Fermi level shifted to the center of the mobility gap by depositing at high discharge power and at low substrate temperature.

Performances of tandem type solar cells and inverted p-i-n type solar cells- Three kinds of tandem type solar cells were fabricated. Cross section of tandem type solar cell is shown in Fig. 5. Three materials were applied to i layer in the bottom cell. The first was a-Si:H with E_{gopt} of 1.95eV. The second was a-Si:H with E_{gopt} of 1.75eV. The third was a-SiGe:H with E_{gopt} of 1.55eV. I layer in top cell was a-Si:H with E_{gopt} of 1.95eV. P and n layers were doped a-Si:H. Thickness of I_T was 850Å, thickness of i layer in top cell was ranging from 350Å to 1050Å, thickness of i layer in bottom cell was 4000Å, thickness of front n layer was 70Å, thickness of p and n layer in tunnel junction are 50Å and thickness of p layer on stainless steel was 300Å. Fig. 6 shows dependence of J_{SC} and V_{OC} as a function of E_{gopt} in bottom cell. J_{SC} increased as E_{gopt} was decreased because bottom cell was able to absorb photons in long wavelength region, while V_{OC} decreased as E_{gopt} was decreased because V_{OC} of the bottom cell was restricted by E_{gopt}. Fig. 7 shows relations between J_{SC} and thickness of i layer in top cell. For comparison, data of the inverted p-i-n type solar cell are also presented in the figure. In the case of inverted p-i-n type solar cell, J_{SC} increased monotonously as thickness of i layer increased because absorbed photon increased. While, in the case of tandem type solar cell, J_{SC} reached maximum value at some value of thickness.

Then, photocurrent in top cell was equal to that in bottom cell. Further
increase of i layer in top cell caused to decrease J_{SC} because photocurrent in bottom cell was decreased.

According to the experimental results shown in Fig.6 and Fig.7, we optimized E_{opt} in bottom cell and thickness of i layer in top cell and we fabricated p-i-n tandem type solar cell with i layer in top cell of 700A and with E_{opt} in bottom cell of 1.55eV-1.6eV. This tandem type solar cell showed maximum efficiency of 5.9%, V_{OC} of 1.64V, J_{SC} of 5.8 mA/cm2 and fill factor of 0.62. Efficiency of this tandem type solar cell was higher than that of previous work0 because quality of a-SiGe:H was improved.

Fig.8 shows collection efficiency vs. wavelength characteristics of the tandem type solar cell comparing with that of the inverted p-i-n type solar cell having efficiency of 6.04%. In long wave length region, collection efficiency of the tandem type solar cell was clearly improved.

For obtaining some information about quality of a-Si:H which composed the top cell, we investigated performances of a-Si:H inverted p-i-n type solar cells. For determining optimum thickness of i layer, we evaluated performances of inverted p-i-n type solar cells with various thickness of i layer. Maximum efficiency was obtained around thickness of 4000A.

Inverted p-i-n type solar cells with i layer of 4000A, n layer of 120A, p layer of 180A and ITO of 800A showed maximum efficiency of 6.62%, V_{OC} of 0.86V, J_{SC} of 13.2mA/cm2 and fill factor of 0.58.

Table I shows performances of amorphous solar cells developed in our laboratory. The inverted p-i-n type solar cell shows efficiency of 3.1% with area of 100cm2. This implies that quality of a-Si:H is sufficiently high and that improvement of a-SiGe:H is necessary for increasing efficiency of tandem type solar cell.

Conclusion- (1) Degradation in photoconductivity of a-SiGe:H was eliminated because of depositing at high discharge power (50W-100W) and at low substrate temperature (200°C). (2) Tandem type solar cells with efficiency of 5.9% was fabricated because of applying improved a-SiGe:H and optimizing cell structure. (3) Inverted p-i-n type solar cells with efficiency of 6.62% were fabricated because of adjusting thickness of i layer.

Acknowledgement- The authors wish to express their sincere gratitude to Prof. Y.Hamakawa for his helpful discussions. They also thank to Dr. H.Oka for his interest and encouragement during this work.

This work was supported by Agency of Industrial Science and Technology under the Sunshine Project.

Fig. 1 Conductivity vs. RF power
Fig. 2 Conductivity vs. Substrate temperature
Fig. 3 Conductivity vs. \(E_{\text{gopt}} \)
Fig. 4 Activation energy vs. \(E_{\text{gopt}} \)
Fig. 5 Cross section of tandem cell
Fig. 6 \(V_\text{oc} \) and \(J_\text{sc} \) vs. \(E_{\text{gopt}} \) in bottom cell
Fig. 7 \(J_\text{sc} \) vs. Thickness of i layer in top cell
Fig. 8 Collection efficiency vs. wavelength