PARTICLE OCTUPOLE EXCHANGE COUPLING IN THE YRAST LINES OF TERBIUM AND DYSPROSIUM NUCLEI

P. Kleinheinz

To cite this version:

HAL Id: jpa-00220624
https://hal.archives-ouvertes.fr/jpa-00220624
Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PARTICLE OCTUPOLE EXCHANGE COUPLING IN THE YRAST LINES OF TERBIUM AND DYSPROSIUM NUCLEI

P. Kleinheinz.

Institut für Kernphysik, KFA Jülich, Jülich, F. R. Germany.

An analysis of high-spin particle-hole excitations\(^1\) in the N=82 nucleus \(^{146}\)Gd has indicated that there is a large gap in the single particle spectrum at Z=64, and in several recent investigations\(^2,3\) we could show that the yраст spectra of few-valence-particle nuclei around \(^{146}\)Gd can be well described within the spherical shell model using empirical one- and two-nucleon interaction energies. Similar techniques have earlier\(^4\) been successfully applied to analyze the high spin states of nuclei close to the doubly closed \(^{208}\)Pb. One thus finds that the - fully or near fully aligned - few-particle yраст configurations have rather similar characteristics in the \(^{208}\)Pb and \(^{146}\)Gd regions. However, the properties of the phonons differ strongly in the two core nuclei. The 3\(^+\) as well as the 2\(^+\) state in \(^{146}\)Gd occur at much lower excitation than in \(^{208}\)Pb. Furthermore, in contrast to \(^{208}\)Pb, where many proton and neutron particle-hole excitations contribute\(^5\) to the 2.6 MeV 3\(^+\) state, the \(^{146}\)Gd octupole has a dominant \(\pi h_{11/2}d_{5/2}^{-1}\) component; a preliminary RPA calculation\(^6\) gives \(\approx 0.75\) for the \(\pi h_{11/2}d_{5/2}^{-1}\) amplitude of the 1.6 MeV 3\(^+\) state. One therefore expects that the coupling modes of \(h_{11/2}\) valence protons to the \(^{146}\)Gd 3\(^+\) state will be strongly influenced by the Pauli principle.

We have recently in an \((a,8n)\) experiment investigated\(^2\) the one-particle nucleus \(^{147}\)Tb, which has an \(h_{11/2}\) proton in its ground state (fig. 1). The \(^{147}\)Tb \(\rightarrow 2p1h\) yrast states in the 2.5 to 3.5 MeV region provide one example for the applicability of the spherical shell model for the nuclei around \(^{146}\)Gd. Rather good agreement with experiment is found for the energies calculated with empirical two-nucleon interactions taken from the known\(^1,7\) level spectra of \(^{146}\)Gd and \(^{148}\)Dy.

The measured E3 transition rate of 31 ± 6 W.u. for the 1266 keV ground state transition characterizes the 15/2\(^+\) state as an octupole excitation, and we interpret the 2038 keV level as the 17/2\(^+\) member of the \(\pi h_{11/2} \times 3^-\) septuplet expected in the neighbourhood of 1.6 MeV. The unexpectedly large .77 MeV energy split is due to the dominant \(\pi h_{11/2}d_{5/2}^{-1}\) contribution of the \(^{146}\)Gd core octupole. (The analogous energy separation of the 13/2\(^+\) and 15/2\(^+\) members of the \(n_{9/2} \times 3^-\) septuplet in \(^{208}\)Pb is 140 keV).

![Fig. 1: Yrast levels of \(^{147}\)Tb observed in \((a,8n)\) and calculated shell model yраст states (ref. 2).](image)

mamamoto\(^5\) has considered the problem of the coupling of a single particle (or hole) to the octupole vibration in \(^{208}\)Pb and has presented the lowest-order diagrams which contribute to the energy shifts in a particle plus phonon multiplet. The diagram appropriate to the case of the \(^{147}\)Tb \(h_{11/2} \times 3^-\) coupling, with two \(h_{11/2}\) particles and one \(d_{5/2}\) hole in the intermediate state is shown in fig. 3, bottom left. When the \(h_{11/2}\) valence proton is added to the 3\(^-\) state of the core, the large \(\pi h_{11/2}d_{5/2}^{-1}\) component of the octupole state will be effectively blocked out by the Pauli principle in some coupled states, and their energies will consequently be much higher than the unperturbed 3\(^-\) energy. In second order perturbation theory the energy shifts are given by:

\[
\delta E = 7 \langle W(3 11/2 11/2 3; 5/2 1) \times \langle h_{11/2}d_{5/2}^{-1} | H | 3^- \rangle^2 \times E(h_{11/2}) - E(d_{5/2}) - E_{3^-} \rangle (1)
\]
where W is a Racah coefficient. For the state with maximum angular momentum, $I = 17/2$, the geometric coefficient $7W$ is $+17/2$, i.e. positive and large, and the state is pushed up in energy. For the $I = 15/2$ state the coefficient is $-7/2$. The negative sign implies that the Pauli principle enhances rather than reduces the $h_{11/2}^2$ component in the 3^{-} phonon, because the two $h_{11/2}$ protons occur more in an antisymmetric than a symmetric arrangement. In the 147Tb level spectrum the $17/2^{+}$ and $15/2^{+}$ levels are shifted from 1.58 MeV in the expected directions, and the ratio of the energy shifts is 1.45 compared to the theoretical ratio of 22/12 (cf. fig. 3). This approximate agreement must be considered satisfactory, since the situation is characterized by strong coupling, where higher than second-order effects may be important. Nevertheless, the 147Tb level energies provide an experimental number for the exchange coupling strength. From the observed 722 keV 15/2 to 17/2 splitting the energy factor of eq. (1) becomes

$$\frac{\langle |H| \rangle^2}{\Delta E} = 856 \text{ keV}$$

which we will use later to calculate energy shifts of multiplet members in 148Dy.

The high spin level spectrum of the two-proton nucleus 148Dy studied7,8 in $(\alpha,4n)$ and $(160,4n)$ in-beam experiments is presented in fig. 2. Below 3 MeV the excitations are of two-proton character. In the yrast decay the complete $s_{11/2}^2$ multiplet is populated, together with 5^{-} and 7^{-} two-proton states which involve $s_{1/2}$ and $d_{3/2}$ valence particles.

At $I = 10$ the 148Dy valence spin is exhausted and higher yrast states must involve breaking of the 146Gd core. Since the 3^{-} octupole is the lowest core excitation, the yrast line can be expected to continue by excitations of the type $10^{+} \times 3^{-}$. In the experiment, the strong 1061 keV E1 transition is found8 to populate the 148Dy 10^{+} isomer from a 3980 keV 11^{-} level, which we interpret as the lowest member of the octupole multiplet built on the $s_{11/2}^2$ 10^{+} state.

In the 148Dy 10^{+} state at 2919 keV, two $h_{11/2}$ protons are aligned and in this case one can expect the lowest member of the octupole multiplet to be two units in spin less than the maximally aligned 13^{-} member. The particle-phonon exchange diagram appropriate to the 148Dy $s_{11/2}^2 \times 3^{-}$ coupling, with three $h_{11/2}$ particles and one $d_{5/2}$ hole in the intermediate state, is shown in fig. 3 to the right. In second order perturbation theory, the energy shifts for members of the octupole multiplet in 148Dy are given by

$$\Delta E(h_{11/2}^2/1) = 14(2I'+1) \times$$

$$\times X \left(\frac{11}{2}, \frac{11}{2}, 1' \right; \frac{5}{2}, \frac{5}{2}, 3; \{ I' \} \) \times$$

$$\times \frac{\langle h_{11/2}^2 d_{5/2}^2 \rangle^2}{E(h_{11/2}^2)-E(d_{5/2})-E_{3^{-}}}$$

where X is a $9j$ symbol, and I' specifies the coupling of the two $h_{11/2}$ protons in the initial state. The crucial point here is that the energy factor $\langle |H| \rangle^2/\Delta E$ containing the interaction matrix element is the same as in the 147Tb case, and therefore one can use the empirical energy factor (2) from the one-particle phonon coupling to describe the exchange interaction of two particles with the phonon. With the value of 856 keV for that energy factor, derived above from the observed 772 keV splitting of the $15/2^{+}$ and $17/2^{+}$ levels in 147Tb, we have calculated the expected energy shifts for the four highest spin members of the $h_{11/2}^2 \times 3^{-}$ multiplet in 148Dy. The $I' = 10$ and 8 couplings both contribute to the 11^{-} and 10^{-} states, and the theoretical energies shown are the lower energy solutions obtained by diagonalizing the interaction in this two-dimensional basis). In fig. 3 the calculated level energies are compared with the experimental results. The good agreement with the observed 11^{-}, 12^{-} energies provides strong support for the interpretation of these states as octupole multiplet members. In future experiments it may be possible to locate additional members of the $h_{11/2}^2 \times 3^{-}$ multiplet, particularly the 13^{-} member which should be an yrast state.

The fact that the excitation energy of the 3^{-} octupole state is higher in 148Dy than in 146Gd can also be understood as a Pauli interference effect. In this case, the geometrical blocking coefficient $14(2I' + 1)X$ for $I' = 0$ equals 2/12 assuming that two of the twelve $h_{11/2}$ protons are present in the 146Gd 0^{+} ground state. With the same empirical matrix element, the calculated energy shift is $\Delta E = +143$ keV, which is close to the experimental number of

$$E_{3^{-}}(^{148}\text{Dy}) - E_{3^{-}}(^{146}\text{Gd}) = 109 \text{ keV}.$$
This slightly smaller increase of the 3- energy in 148Dy is not unexpected since the proton pair in the 148Dy ground state also partially occupies the $s_{1/2}$ and $d_{3/2}$ orbitals.

As far as we know, this type of particle phonon exchange coupling involving two particles has not been observed before; it is encouraging that the empirical coupling strength derived from the one-particle case describes the more complex situation so well.

It is noteworthy that octupole yrast states with $\Delta I = 3$ systematically occur in the nuclei above 146Gd. In the Tb isotopes with N>82 low lying octupole states are found, which due to Pauli interference have $\Delta I = 2$, analogous to the 1266 MeV excitation in 147Tb discussed above. Such states have been identified in 148Tb$_{83}$ ($E_x = 1006$ keV, $I^\pi = 11^-$, Ref. 2), 149Tb$_{84}$ (1094 keV, 15/2+$^-$, Ref. 9), 150Tb$_{85}$ (874 keV, 11$^-$, Ref. 10), and 151Tb$_{86}$ (1097 keV, 15/2+$^-$, Ref. 11).

Octupole transitions with $\Delta I = 1$ are found in the yrast cascades of the Dy isotopes above 3 MeV excitation, where the two $h_{11/2}$ valence protons are aligned. For example, in the three particle nucleus 149Dy$_{83}$ recent experiments14 identified a 984 keV $E1$ transition feeding the state, suggesting a $\left(h_{11/2} \otimes f_{9/2}\right)_{27/2^+}$ configuration for the 3645 keV level. In 150Dy$_{84}$ a 742 keV $E1$ transition deexcites12 the 5813 keV 19$^-$ octupole state to the $\left(h_{11/2} \otimes f_{9/2}\right)_{3/2^+}$ level, and in 151Dy the $\left(h_{11/2} \otimes f_{9/2}\right)_{11/2^+}$ state is fed13 by an 839 keV $E1$ transition from the $\left(\pi l_{1/2} \otimes \pi l_{1/2}\right)_{43/2^+}$ yrast state at 5743 keV. In all cases these octupole excitations are built on yrast states in which all available $h_{11/2}$, $f_{9/2}$, and $v_{1/2}h_{gf2}$ valence spins are fully aligned. The fact that octupole core excitation competes successfully with lifting of a neutron into the $\pi l_{11/2}$ orbital reemphasizes the rather high single particle energy of that orbital noted in earlier14 spectroscopy studies.

References

1) P. Kleinheinz, R. Broda, P.J. Daly, S. Lunardi, M. Ogawa, J. Blomqvist, Z. Physik A290 (1979) 279
2) R. Broda, M. Behar, P. Kleinheinz, P.J. Daly, J. Blomqvist, Z. Physik A293 (1979) 135
6) J.S. Dehesa, J. Speth, P. Kleinheinz, unpublished
8) P. J. Daly, P. Kleinheinz, R. Broda, S. Lunardi, H. Backe, J. Blomqvist, Z. Physik A, in press, and contribution to this conference (p. 61)

13) M. Piiparinen, S. Lunardi, P. Kleinheinz, H. Backe, J. Blomqvist, Z. Physik A290 (1979) 337. (Recent conversion electron measurements at Jülich confirm the 839 keV E1 multipolarity suggested by T. L. Khoo in Proc. ASHPIN, Argonne (1979), ANL/PHY-79-4, p. 95)