ELECTRONIC, MAGNETIC AND STRUCTURAL PROPERTIES OF AMORPHOUS Eu80Au20 ALLOYS FROM HYPERFINE INTERACTIONS AT EUROPIUM

J. Friedt, M. Maurer, J. Sanchez, A. Berrada, A. Qachaou, P. Panissod, J. Durand

To cite this version:

J. Friedt, M. Maurer, J. Sanchez, A. Berrada, A. Qachaou, et al.. ELECTRONIC, MAGNETIC AND STRUCTURAL PROPERTIES OF AMORPHOUS Eu80Au20 ALLOYS FROM HYPERFINE INTERACTIONS AT EUROPIUM. Journal de Physique Colloques, 1980, 41 (C8), pp.C8-638-C8-641. 10.1051/jphyscol:19808160. jpa-00220261

HAL Id: jpa-00220261

https://hal.archives-ouvertes.fr/jpa-00220261

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ELECTRONIC, MAGNETIC AND STRUCTURAL PROPERTIES OF AMORPHOUS Eu$_{80}$Au$_{20}$ ALLOYS FROM HYPERFINE INTERACTIONS AT EUROPIUM

J.M. Friedt, M. Maurer, J.P. Sanchez, A. Berrada$^+$, A. Qachau$^+$, P. Panissod$^+$ and J. Durand$^+$

Centre de Recherches Nucléaires, 67037 Strasbourg Cedex, France
^+L M S E S, 4, rue Blaise Pascal, U L P 67000 Strasbourg, France.

Abstract. - Amorphous Eu$_{80}$Au$_{20}$ has been investigated by means of Mössbauer spectroscopy and NMR at 151Eu. A large electric field gradient (EFG) is detected. The EFG and isomer shift at Eu$^{2+}$ ions reveal unusually large temperature dependences between 4.2 and 245 K. This feature is tentatively attributed to tunnelling states, typical of amorphous materials. All the results are consistent with a strong structural short range order. The alloy orders asperomagnetically below $T_c=85$ K. The spontaneous magnetization, the hyperfine field distribution and the reduced magnetization temperature dependence are consistently discussed in terms of distributions of moments directions and of exchange interactions.

INTRODUCTION

Electronic and magnetic properties of amorphous alloys are closely connected with the structural and chemical short range order [1, 2]. Therefore, combined macroscopic (magnetization measurements [3]) and microscopic (Mössbauer spectroscopy and NMR) investigations are powerful tools for understanding the magnetic properties. The series of a-RE$_{80}$Au$_{20}$ alloys is particularly attractive because magnetic properties and crystal field effects vary with RE element, whereas one expects the structural short range order to be roughly constant on the basis of the strong similarities between RE - Au phase diagrams [4]. In these a-RE$_{80}$Au$_{20}$ alloys, only the RE atoms carry a magnetic moment, while the Au atoms are non-magnetic. The present paper is devoted to the study of a-Eu$_{80}$Au$_{20}$ which is an exemplary system in view of the following features : a) Eu is divalent; thus, anisotropy and crystal field are negligible b) Eu nuclei are suitable for both Mössbauer and NMR spectroscopies c) this amorphous material is magnetically ordered.

EXPERIMENTAL RESULTS

Bulk magnetization measurements were previously reported [3]. A Curie temperature of $T_c=85\pm5$ K was determined, consistently from AC-susceptibility and from Arrott plots. The saturation moment per Eu$^{2+}$ atom (6.7 ± 0.15 μ_B) is slightly reduced with respect to the theoretical value. The temperature dependence of the reduced spontaneous magnetization $M(T)/M_s$ is significantly flattened as compared to the $S=7/2$ Brillouin behavior (fig. 1).

Fig. 1 : Temperature dependence of magnetization of a-Eu$_{80}$Au$_{20}$ (circles) normalized to the spontaneous saturation magnetization, compared to Brillouin function (dashed line). The solid line corresponds to a calculation with a_i and J_{ij} distributions.

151Eu Mössbauer spectroscopy confirms the ordering temperature : indeed, the paramagnetic absorption spectra broaden suddenly below 92 ± 5 K. Above this temperature, spectra are satisfactorily fitted assuming single values for both isomer shift δ_{IS} and quadrupole interaction e^2QQ (Table 1, fig. 2). In the fits, the linewidth was constrained to 2.7 mm/s. Fits are insensitive to an EFG asymmetry parameter and attempts of including distributions of either δ_{IS} or (and) e^2QQ were unsatisfactory.
The value of $e^2\Omega Q$ is unusually large for the Eu$^{2+}$ configuration in an intermetallic [5] and the positive sign is unambiguous. Both δIS and $e^2\Omega Q$ display very large reversible temperature dependences (Table 1).

![Figure 2: 155Eu Mössbauer spectra of a-Eu$_8$Au$_2$O$_{19}$ at 185(a) and 4.2 K (b). Fits are represented by solid lines.](image)

Table 1: 155Eu Mössbauer hyperfine parameters. Errors on last figure in parentheses.

<table>
<thead>
<tr>
<th>Temperature (T)</th>
<th>δIS (mm/s) at 300 K</th>
<th>$e^2\Omega Q$ (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>245</td>
<td>$-10.0 (2)$</td>
<td>$+315 (6)$</td>
</tr>
<tr>
<td>185</td>
<td>$-9.6 (1)$</td>
<td>$+278 (6)$</td>
</tr>
<tr>
<td>100</td>
<td>$-9.3 (1)$</td>
<td>$+261 (4)$</td>
</tr>
<tr>
<td>4.2</td>
<td>$-8.3 (2)$</td>
<td>$+270$ (constrained)</td>
</tr>
</tbody>
</table>

Notice that the temperature dependence of the average H_{hf} follows the reduced magnetization.

![Figure 3: Hyperfine field distribution (arbitrary unit) at 155Eu in a-Eu$_8$Au$_2$O$_{19}$ at 4.2 K.](image)

Spin echo NMR measurements were carried out at 1.4 K on same samples. The frequency corrected spectrum arises mainly from 155Eu nuclei (Fig. 4). Signals corresponding to the 153Eu and 197Au isotopes are possibly detected on the low frequency side. H_{hf} and $e^2\Omega Q$ values of 160 ± 5 kOe and 330 ± 70 MHz are deduced from numerical analysis of the high frequency spectral side (155Eu). Owing to the large quadrupole interaction, the perturbation treatment used here is of limited validity; this explains the large unaccuracy in the determination of $e^2\Omega Q$. In any case, the agreement between the NMR and Mössbauer hyperfine parameters is very satisfactory and gives confidence in the independently concluded results.

DISCUSSION

The unique values (or narrow distributions) measured for both δIS and $e^2\Omega Q$ indicate that fluctuations of local (chemical) environment of Eu atoms are small. Indeed, the hyperfine parameters of Eu in crystalline compounds are known to depend significantly on the number and the nature of neighbors [5-6].

The large EFG arises from charge disturbances caused by the asymmetry of the nearest neighbors atomic surrounding since Eu$^{2+}$ is an orbital S state ion. Referring to the structural studies on a-La$_{80}$Au$_{20}$ [7], each Eu atom has on average 8 Eu and 3 Au atoms as nearest neighbors. The EFG axes are likely to be randomly distributed with respect to any macroscopic axis.
The temperature dependence of δ_{1S} between 4.2 and 245 K is unusually large (Table I). It exceeds by an order of magnitude the second order Doppler shift (-6.6×10^{-7} mm/s from 4.2 to 245 K). The hypothesis of an Eu fluctuating valence is ruled out by the sign of the temperature dependence of δ_{1S}. This indicates a decreasing electron density at increasing temperature, whereas thermal excitation of an Eu^{2+} state would induce an effect of opposite sign. Also, photoemission measurements [8] at 300 K confirm a pure Eu^{2+} valence and the effective paramagnetic moment from the Curie-Weiss law is $8.2 \pm 0.2 \mu_B$/at, which is close to the Eu^{2+} ionic value (7.94 μ_B/at). The anomalous behaviour of δ_{1S} cannot either be accounted for by thermal expansion. Indeed, by reference to crystalline Eu systems, the volume expansion over this range of temperature should be roughly 15 % in order to account for the observed change of δ_{1S} [9].

We suggest tentatively that the anomalous thermal dependences of δ_{1S} and $e^2\gamma Q$ might be a specific consequence of the amorphous structure. Some properties of covalent glasses and of metallic amorphous systems (e.g. sound velocity, ultrasonic attenuation) have been explained in the frame of a two-levels-systems (TLS) model [10–13]. In the TLS, the elastic potential curve versus generalized coordinates of atoms presents several minima. Thus, inequivalent atomic positions can be occupied through a dynamic thermal process. Assuming that these inequivalent positions have slightly different structural environments, and therefore different δ_{1S} and $e^2\gamma Q$ values, it is expected that the time-averaged δ_{1S} and $e^2\gamma Q$ measured by Mössbauer spectroscopy may shift with changing temperature.

The saturation moment at 4.2 K, as obtained from an $1/H$ extrapolation, is $6.7 \pm 0.15 \mu_B$/Eu at. This rather low value for a $4f^7$ configuration can be interpreted as a result of misalignment of moments (asperomagnetism). The computation of the cone angle requires the knowledge of the saturation moment in case of perfect spin alignment. The moment of Gd^{3+} is known to be $7.55 \mu_B$/at, which is interpreted as the sum of the $4f^7$ contribution ($7 \mu_B$) and of the $5d^{10}s^2$ conduction electrons contributions (0.55 μ_B). A comparison of the 4.2 K high field isotherm curves of α-$\text{Gd}_{80}\text{Au}_{20}$ and α-$\text{Eu}_{80}\text{Au}_{20}$ shows that the moment of Gd exceeds by $0.15 \pm 0.05 \mu_B$ the one of Eu, under the reasonable assumption of identical magnetic structures. This difference originates from different conduction electron polarizations. Thus, Eu atoms should carry a moment of $7.3 \mu_B$. Consequently, the lowering of the macroscopic Eu moment by asperomagnetism is $0.6 \pm 0.1 \mu_B$/at.

The whole of the present magnetization and hyperfine field distributions can well be accounted for assuming such an asperomagnetic order [2]. At low temperature, spin directions are not collinear, owing to structural disorder which induces canting of the local easy axes of magnetization. However, this anisotropy is weak because Eu^{2+} is an S-state ion. Let α_i be the angle between the spin S_i and the reference axis defined by the macroscopic magnetization direction, and let J_{ij} be the exchange interaction between S_i and S_j; the Heisenberg Hamiltonian expresses as:

$$\mathcal{H} = - J_{ij} \langle \text{S}_i^z \rangle \langle \text{S}_j^z \rangle \cos(\alpha_i - \alpha_j)$$

(1)

The reduction of saturation moment per Eu^{2+} atom is understood assuming a gaussian distribution of
with a FWHM equal to 60°. The 6s net density being constant, it is reasonable to assume that J_{ij} has a narrow (gaussian) distribution around the mean value.

The hyperfine field at Eu nuclei arises from three main contributions:

$$H_{hf} = H_{cp} + H_{op} + H_n$$

(2)

H_{hf} is the core polarization, which reflects the susceptibility of the inner shells via intra-atomic exchange with the localized moment. H_{op} is the ion's own polarization of the 6s electrons. According to Nowik et al [14], the 6s polarization is proportional to the 6s net density and thus, a monotonous correlation between H_{op} and δ_{IS} is observed. In this picture, if the H_{hf} distribution would only arise from H_{op}, the δ_{IS} distribution should be several mm/s wide. This is not experimentally observed. Therefore, we conclude that, in a-Eu$_{80}$Au$_{20}$, both H_{op} and H_{cp} are roughly constant. H_{cp} is the contribution of the neighbors to H_{hf} at the central site. The H_{hf} distribution must arise from this term. Under the assumption that the H_{hf} distribution reflects the distribution of exchange field, the Mössbauer probability $P(H_{hf})$ (which is also consistent with NMR data) is interpreted as resulting from both α_i and J_{ij} distributions. The gaussian distribution of α_i leads to an exchange field distribution of truncated parabolic shape. The gaussian J_{ij} distribution (FWHM = 25°) is narrow, in relation with the well defined δ_{IS}. Assuming that α_i and J_{ij} are independent variables, $P(H_{hf})$ will be given by a convolution of these two distributions. Since long range magnetic interactions are dominant (T_c is well defined), we have computed the reduced saturation magnetization versus T/T_c in a mean field approximation taking both α_i and J_{ij} distributions into account. The agreement with experimental data is indeed satisfactory (fig. 1). A Mössbauer investigation of the thermal variation of the width of $P(H_{hf})$ is impracticable because of fitting ambiguities above 40 K. Such data would have allowed to confirm that the main part of the magnetic coupling has long range character [15].

CONCLUSION

The magnetic properties of a-Eu$_{80}$Au$_{20}$ are consistently depicted assuming a narrow distribution of exchange interaction between the localized moments, which are amperomagnetically ordered at low temperature. These magnetic properties, the unique value of the isomer shift and of the quadrupole interaction for all the Eu$^{2+}$ atoms confirm that there is a strong short range order. The isomer shift and the quadrupole interaction display anomalously large reversible temperature dependences, which are tentatively described in terms of a two-levels model, characteristic of amorphous states. Mössbauer spectroscopy experiments at both rare earth and gold atoms in other a-RE$_{80}$Au$_{20}$ are in progress. These combined studies should provide detailed information with respect to magnetic order, short-range order and crystal field effects in such amorphous intermetallics.

References

7. J. LOGAN, Scripta. Met. 9, 379 (1975)

8. A. BERRADA, G. KRILL, N. HASSANAIN and J. DURAND (to be published)

