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METAL - NON-METAL TRANSITION. 

L I Q U I D  AND AMORPHOUS METALS 

N.F. Mott 

Cavendish Laboratory,  Madingley Road, Cambridge CB3 OHE, U. K. 

Abstract.- A discussion is given of some of the properties of liquid and amorphous metals under 
conditions when the mean free path has its minimum value. The concept of a 'minimum metallic conduc- 
tivity' is discussed, with applications to expanded fluid mercury and caesium. Then materials with 
somewhat higher conductivity are mentioned, particularly liquid transition metals. The conditions 
under which the author's theory for these materials should be valid are described. A qualitative 
model for a positive Hall constant in liquid alloys is proposed. 

1. METALS WITH SHORT MEAN FREE PATH. 

In much of our work in the last fifteen 

years my colleague Professor Davis and I 

have examined the electrical properties 

of a degenerate Fermi gas in a disordered 

environment, where the scattering is so 

strong that first-order perturbation theory 

is no longer valid, and the mean free path 

L is comparable with the interatomic dis- 

tance 5 (L % a, the Ioffe-Regel condition). 

We have done this, not by considering 

multiple scattering, but by the use of the 

so-called random phase approximation, 

according to which, in a tight-binding 

situation, the wave function of an elec- 

tron near the Fermi energy EF is of the 

form 

where qn are atomic wave functions, and 
a On are random amplitudes and phases n' 
at sites denoted by n. This approximation 

has been used by various authors, notably 

I3indley2 and by ~riedman~ in his treatment 

of the Hall effect, to which I will return 

later. My aim in this lecture is to see 

what this concept has to tell us about 

liquid and amorphous metals. 

First of all, however, I must outline 

what in my view is reasonably certain and 

what is controversial in the conclusion 

that can be drawn from the wave-function 

(1) . I start with the expression for the 

conductivity of a 'metal', 

where SF is the Fermi surface area. If 

L = a, this becomes 

a = sFe2a/12n3fi (3) 

if the number of electrons per unit volume 

is n/2a (n = 1 for a divalent metal) this 

reduces to 

= L e2/fia 
3 (4 

For reasonable values of 5, values of a of 

the order 3-4000 R-'cm-' ( p  .1. 300 ~t Rcm) are 

expected. Liquid and amorphous transition 

metals often have resistivities of more 

than half this value. 

The use of equation (3) when L .1. a can 

of course be criticised because the wave- 

number k is no longer a good quantum 

number. It can however be derived from the 

Kubo-Greenwood formula (see ref. 1, p 29), 

a slightly different value, ~ r / 8  instead of 

1/3, being obtained. In deriving this 

equation, the arbitrary assumption is made 

that the variation of the an is small. It 
is realised that this is an untested 

hypothesis, so that the results obtained 

are qualitative. 

It is a fairly common property of narrow 

band crystalline metals that the resisti- 

vity saturates at about 100 p ncm. ~ h u s  
Wiesmann et a1. 4 ,  Allen et a1. and 
Chakraborty and ~ l l e n ~  have discussed the 
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d band metals Nb3Ge and Nb3Sn in this con- 

nection. The present author (see also 
7 Fisk and Webb ) believes that in these 

materials the Ioffe-Regel condition is 

already reached due to the strong phonon 

scattering at high temperatures. The 

resistivity is lower than the 300 1~. Rcm 

mentioned above because, in our view, the 

Fermi surface is likely to be large, on 

account of several overlapping sub bands. 

As regards the T-dependence, the authors 

show that 

gives a good approximation to the experi- 

mental results, ogG denoting the value 

calculated from the Bloch-Gruneisen for- 

mula, taking the electron-phonon inter- 

action from the superconducting proper- 

ties. The ratjonale of such a formula, 

they suggest, is the following. Suppose 

we make use of (2) with L calculated from 

the Bloch-Grcneisen treatment for single 

scattering only. The assumption then is 

that L > >  a. For multiple scattering a 

calculation in ascending powers of Lo/a 

(Lo being the calculated value of the mean 

free path) should then given an expansion 

of the form 

The second term will thus be independent 

of L, and thus of T, so that eqn. (5) is 

reproduced. 

For liquid transition metals it would 

be interesting to see if the T-dependence 

of the resistivity could be represented 

by (5) , aZ replacing aBG where aZ is cal- 
culated from the Ziman formula. The com- 

parison has not been made. We think the 

model is reasonable for metals such as La, 

V, Nb, where in the crystal it is not 

believed that there are separate s and 

d-like parts of the Fermi surface. The 

others, such as Pd, are discussed in 5 3 

of this paper. 

For metallic glasses the temperature - 
coefficient of resistance is normally 

small. PIooij8 and ~anc~enan' point out 

the dp/dT becomes negative for alloys when 

P > 170 1 ~ .  R cm. Johnson and Girvin1° give 

an explanation of this in terms of the 

interaction with phonons. In a qualita- 

tive way, one might expect that when the 

condition L % a is reached, phonon scat- 

gering cannot increase the resistance; 

but the smearing out of the scattering 

potential with increasing T might decrease 

it. Other possibilities are discussed in 
11 

ref. 1, p 178 and by Brouers and Brauwers . 

2. METAL-INSULATOR TRANSITIONS OF 

ANDERSON TYPE. Although according to 

Ioffe and Regel and as is apparent from 

the wave function (l), values of L less 

than a cannot exist, eqn.(4) does not give 
the lowest metallic conductivity possible. 

If the disorder is great enough to broaden 

substantially the range of energies of 

occupied states, then (3) can be written 

where g = N(EF)/N(EFlfree - 
Eqn. (6) can be deduced from the Kubo- 

Greenwood formula. As g decreases, (6) 

should remain valid until localization 

sets in, in the sense of Anderson's 12 

paper of 1958. This occurs when g % 1/3, 

and the conductivity at this point, 

"min = 0.025 e2/Ka (7) 

has been called by the present author 
13 

the 'minimum metallic conductivity' and 

is in the range 300 - 500 R-'cm-'if 5 is 

a few Angstroms; the constant is depen- 

dent on coordination and other factors. 

The existence of a minimwn metallic 

conductivity is of course controversial. 

Recent work by Abrahams et al. 
14,15 

1 

using a scaling argument, comes to the 

conclusion that it does not exist. 

wegner16 and ~ b t z e l ~  come to a similar 

conclusion, as did earlier work based on 

classical percolat'ion theory. They be- 

lieve that the conductivity is zero if 

the Fermi energy lies at the mobility 

edge. According to the Kubo-Greenwood 

formula, this can be so only if the an 



in eqn.(l) show strong variations over a 

long range, as shown by the present author 

in a paper to be published. Theoretical 

work which does lead to a minimum metallic 

conductivity is the numerical work of 

Licciardello and ~houless'~ and the recent 
19 analysis of Edwards . The experimental 

evidence comes from many systems in which 

the Fermi energy can be shifted through a 

mobility edge by change of composition or 

in other ways, leading to a metal-nonmetal 

transition of the type shown in fig. la, 

rather than that predicted by Abrahams et 

al. which is probably*as shown in fig. lb. 

Fig. 1 p-T curves (a) as observed, 
(b) if amin does not exist. 

The evidence 20 necessarily comes from 

solid systems (impurity bands, Lal-xSrxV03 

and similar materials), because it depends 

on the behaviour of the conductivity at 

low temperatures; it is reviewed by Mott 
1 et al. 20 and Mott and Davis . As far as I 

know, the metallic glasses never approach 

this regime. Within the subject matter of 

the conference, systems are relevant in 

which a conduction and a valence band in a 
non-crystalline system separate with in- 

creasing volume. Expanded fluid mercury 

has been extensively discussed in this 

connection. What is believed to happen is 

illustrated in fig. 2. As the two bands 

separate, localization sets in at the min- 

imum of the so-called 'pseudogap'. When 

this occurs, two conduction channels are 

expected in solids, as follows. 

(a) At high T, by electrons excited to the 

mobility edge, giving a conductivity 

* 
The analysis is mine; the authors quoted 
do not make clear what behaviour they 
expect. 

Fig. 2 (a) Density of states with two 
overlapping bands. (b) the same, 
showing range of localized states. 

a = o exp (-€/kT) min 

with E = Ec - EF, EG being the mobil- 
ity edge as marked in fig. 2. 

(b) Variable hopping at low T. 

The model which I have discussed up 

till now is essentially a 'one-electron 

model'. I want now to look at what happens 

for 'Hubbard bands' - that is, for systems 
such as Si:P, metal-ammonia and expanded 

fluid caesium, in which the material is 

made up of one-electron centres (Do). The 

upper Hubbard band, put forward by 

Fritzsche for Si :P  prior to Hubbard's work 

and called the D- band, represents the 

movement of an electron from a D- centre 

through an array of Do centres. The 

material is an insulator because the upper 

band is separated from the lower by the 

'Hubbard U'. The density of states should 

be as in fig. 3, the upper Hubbard band 

being much wider than the lower. 

Fig. 3 Suggested density of states in 
doped silicon: (a) lower Hubbard Do 
band, (b) upper Hubbard D- band, 
(c) conduction band. 

21 As was first pointed out by Cyrot , 
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the M-NM transition in such Systems occurs transitions such as that in expanded fluid 

when the bands begin to overlap and this mercury the critical point will not be of 

model leads to the formula this type, but of the normal fluid-vapour 

form. For mercury the conductivity at the 
n1I3 a t- 0.26 H (') critical point is much smaller, by about 

five orders of magnitude. 
with the constant depending little on the 

refinements introduced into the model. The 

present author believes, however, that the 
3. LIQUID AND AMORPHOUS TRANSITION 

transition is none the less of Anderson 
METALS AND ALLOYS. In this section I dis- 

type, as in fig. 2, occurring when EF and 

EC coincide. Disorder, however, intro- 

duces a difference. In a crystalline sys- 

tem, at a metal-insulator transition, a 

first order transition as in fig. 4, is 

expected. If one varies the parameter x 

(volume or composition) which leads to the 

transition, there should be a discontinu- 

ous change in n, the number of free elec- 

trons. If, however, the disorder is great 

enough, I believe that this discontinuity 

is wiped out, and have discussed the con- 
2 2 

ditions for this . I assume that this is 

the case in Si:P. For the liquids NaNH3 

and expanded fluid caesium, it seems that 

this is not so and, as fig. 4 illustrates, 

the transition of necessity leads to a 

g. 4 Free energy as a function of 
volume or composition at a metal- 
insulator transition. 

critical point. At this critical point, 

then, the concentration should be given 

by (9) and the conductivity - at any rate 
approximately - by ( 7 ) .  For expanded 

fluid caesium, it is satisfactory that the 

work of Freyland 23r24 shows that both pre- 

dictions are satisfied. 

I might add that, for reasons I have 

given elsewhere, for band crossing 

cuss transition metals, such as Ni or Pd2 

in which an s-like and a p-like part of 

the Fermi surface are thought to exist. 

In 1936 I put forward a theory25 of the 

electrical resistance of such metals. In 

this, conduction is due to parts of the 

Fermi surface which are s-like, but the 

main scattering processes are to parts 

that are d-like, where the density of 

states is high. Assuming the Fermi surface 

areas to be Ss and Sd respectively, the 

conductivity should be 

where Ls and Ld are the respective mean 

free paths. The mean free paths are due 

both to phonons and in alloys and liquids 

to disorder. For L, I write 

the two terms on the right referring to 

scattering to another s-like point on the 

Fermi surface and to a d-like part; l/Lsd 
>> l/Lss. The success of this model for 

crystalline metals was last reviewed by 

the present author26 in 1964. It should 

be strongly emphasised that it depends on 

the assumption of a narrow d-band hybrid- 

ised with an s-band, and that this is 

probably only a good model if the tran- 

sition metal is Ni or Pd or the elements 

next to it in the periodic table. Thus 

~ e t t i f o r ~ ~  calculates md about twice as 

great for Pd or Rb as for Zr and Nb. For 

the latter the considerations of 5 2 should 

be valid. 

For isolated transition metal atoms, as 

first proposed by Friedela8, resonance can 

lead to a large d phase shift n2 and so to 
a large residual resistance. When many 



body theory is applied, interaction bet- 

ween the conduction electron and the elec- 

tron on the impurity can lead to Kondo 

behaviour. 

For liquid transition metals Dreirach 

et al. 29 put forward some years ago a 

model in which there is a single Fermi 

surface, Ss, and a large phase shift, ~ 2 ,  

giving a large value of l/Ls. The present 

author3' proposed an alternative theory, 

in which the resistivity is explained by a 

model similar to that for solids. The two 

models were discussed further by Evans et 

and I do not think the controversy 

about them is resolved. They make rather 

different predictions. In the author's 

model, and if s + d scattering is the pre- 

dominant mechanism, the theory gives 

little T-dependence of the resistivity. 

That of Evans et al., being an adaptation 

of Ziman's theory of conduction in liquid 

metal, gives a positive TCM if n is of the 

order unity, a negative one if n Q, 2. I 

believe a distinction between the two 

models can be made only if Ls > a; if not, 

in my view, a distinction between the s 

and d bands cannot be made; there is no 

Fermi surface and there is no obvious 

reason why the Ziman theory should be 

applicable or its dependence of dp/dT on 

n should be valid. 

In my paper3' of 1972 I do not attempt 

to calculate Ld, but suppose that it has 

reached its minimum value (Ld Q, a). In 

that case the s + d transition probability 

will not depend on TI and can be estimated. 

So for Ls > a, a roughly T-independent 

behaviour of the reactivity is predicted. 

Moreover in some of the liquid transition 

metals the situation Ld % a is reached 

below the melting point, so the change of 

resistivity there is small. 

If then one looks at eqn. (10) and (11) , 
one expects these conditions to be valid 

only if l/Lsd >> l/Lss and this should be 

so only if there is a narrow d band with 

high density of states. Enderby and 

~upree~', by giving evidence that, if the 

thermopower is 

n 2  kT 1 d RnN s=----d 
3 e EF dE 

observations for liquid Ni, Co and Fe 

agree with calculations by Keller and co- 

workers for these liquids, come to the 

support of the model. For trivalent rare 

earth metals Delley et a1. 33 show that, 

although for the metal Lu the change of 

resistance across the melting point is 

small, the TCR corresponds with that ob- 

tained from the extended Ziman theory, as 

due to a change in n throughout the series. 

Perhaps the quantity l/Lss in eqn.(lO) is 

the predominant term, Lss being due to the 

d phase shift. 

Basak et a1.34 have investigated both 

the resistivity p and the thermoelectric 

power of a non-magnetic Be-Ti-Zn glass. 

Here photoemission experiments on a simi- 

lar glass35 show that a d band is less 

than half full so the s + d model would 

indicate n-type thermopower, contrary to 

the p-type form observed. Here we must 

suppose no narrow and partially separated 

d band exists. These authors suggest that 

in magnetic glasses there are some sites 

where a moment exists in zero magnetic 

field, and that these give rise to a Kondo 

effect and resistance minimum. This is an 

interesting suggestion. It may well be 

that in most amorphous just metallic sys- 

tems, such as one finds in impurity bands 

and inversion layers, at special sites 

electron-electron interaction gives rise 

to local moments which give Kondo spin 

flips with the surrounding sea. Some of 

the evidence is given by ~ u n s t a l l ~ ~  and 

Asano and yonezawa3' have evaluated the 

density of states and the resistivity p 

from the Kubo-Greenwood formula. They 

assert that their results do not agree 

with the prediction that p is proportional 

to IN ( E ~ )  but this prediction was never 

made for the liquid transition metals con- 

sidered here. It was proposed that p a 

N~(EF) for a certain class of transition 

metal, liquid or solid, and I do not think 

that these calculations present any evi- 

dence against this. 
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4. HALL EFFECT IN LIQUID TRANSITION 

METALS. I turn now to the positive Hall 

effect found a decade ago by Busch et 

al. 40r41 for liquid Ge-Co alloys with 

resistivity about 140 p Rcm (a  = 7000 

c m  These can perhaps be considered 

as in the range L a a, or near it (cf.5 l), 

and were discussed by the present author3' 

on this basis. We attempt a new explana- 

tion here, along somewhat different lines. 

We remark also that recently Guntherodt 

and co-workers (private communication) 

have found positive Hall coefficients in a 

large number of liquids and metallic 

glasses, having resistivities of this 

order, and that there is some evidence 

that this is related to a high magnetic 

susceptibility. 

We remark first that, even if L a a in 

a liquid or metallic glass, a Hall co- 

efficient of normal sign and value RH = 

l/nec is normally predicted. Ballentine 
4 2 

considered the possibility of deviations 

due to skew scattering f r o m  spin-orbit 

interaction and ~ 0 t h ~ ~  considered the sign 

of RH, but came up with a negative value 

even when the thermopower is p-type. 

Fig. 5 Three- and four-site models 
for the Hall effect. 

To consider a positive sign, we start 
3 

from the analysis of Friedman . This 

derives from the theory of the Hall effect 

for polaron motion due to Holstein and 
4 4 Friedman . In this theory the Hall 

effect arises from the interference bet- 

ween the two paths shown in fig. 5a. The 

Hall coefficient is negative for electrons 

or holes, unless a four-site model is - 
assumed (fig. 5b) which is unlikely for 

liquids or glasses. ~riedman~ extended 

this analysis to unactivated conduction 

in the case L a a, that is, for unactiv-, 

ated motion between atomic sites. The 

conclusion was the same with, for the Hall 

mobility pH, 

This statement, as regards the magnitude of 

pH, is in satisfactory agreement with ex- 

periment for a large number of semi- 

conductors; also for metals eqn.(l3) is 

often satisfactory. But as regards the 

sign,(l3) is very often at fault. Thus in 

amorphous hydrogenated silicon RH is 

positive for holes, negative for electrons. 

Emin 45r45 first pointed out that a sign 

reversal could be explained if, instead of 

s-orbitals, the polarons were formed round 

bond orbitals of antibonding type; this, 
however, seems to us unlikely for the con- 

duction band of a-Si. The presentauthor 47 

suggested that the sign reversal might 

occur if wave function at EF were con- 

structed from anti-bonding orbitals without 

polaron formation. Although the theory 

remains anything but precise, the obser- 

vations suggest that it may be on the 

right lines. 

We now suggest that the same considera- 

tion might be applied to a degenerate 

electron gas. Thus a positive Hall co- 

efficient could be expected if: 

(a) L 2, a. 

(b) The wave function at the Fermi edge 

are now the type (l), the 9, being anti- 
bonding orbitals. This is, perhaps, like- 

ly to be the case where the orbitals are 

mainly of d-type and a d-band is nearly 

full. Our model is, of course, specula- 

tive and entirely qualitative at present. 
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