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QUANTUM THEOREM OF CORRESPONDING STATES AND SPIN-POLARIZED QUANTUM SYSTEMS*

L.H. Nosanow

Division of Materials Research, National Science Foundation,
1800 G Street, N.W., Washington, D.C. 20550, USA.

Résumé.- On donne une revue des propriétés thermodynamiques des systémes quantiques macroscopiques
du point de vue du Théoréme Quantique des Etats Correspondants. Ces résultats sont utilisés pour
prédire et discuter les propriétés thermodynamiques des systémes quantiques spin-polarisés.

Abstract.- A review of the thermodynamic properties of macroscopic quantum systems is given from
the unified point of view provided by the Quantum Theorem of Corresponding States. These results
are used to predict and discuss the thermodynamic properties of spin-polarized quantum systems.

Introduction. One of the most exciting areas of states arguments will be used to predict the
investigation in this century has been and con- thermodynamic properties of spin-polarized
tinues to be macroscopic quantum systems. Re- quantum systems.

search in this area has uncovered an unexpected-

1y rich vein of unanticipated phenomena, the This review is organized into the following
study of which has led to an ever deeper under- Sections:

standing of the laws of nature. New investiga-
tions have recently been undertaken on a new set
of such macroscopic quantum systems; namely, o phenomenological potentials,
spin-polarized quantum systems such as spin-
polarized atomic hydrogen /01-06/ and spin-
polarized helium-three /07, 08/. Recent experi-
mental results /09, 10/ have been a major step
forward and have brought an air of optimism to
workers in this field that it will be possible
to prepare these systems and keep them in stable
form Tong enough to study their properties, even
equilibrium properties, in detail.

0 macroscopic quantum systems,

0 quantum theorem of corresponding states,

o extended quantum theorem of corresponding
states,

o thermodynamic properties of macroscopic
quantum systems, and

o spin-polarized quantum systems.

Macroscopic Quantum Systems. A macroscopic
23

quantum system is a system of approximately 10
The present review has as its goal a discussion particles which manifests quantum effects on a
macroscopic scale. These systems exhibit phe-
nomena, which are solely due to quantum effects
and have no classical analog:

of the possible thermodynamic properties of
these systems. It turns out that it is possible
to do this from a unified point of view because
of the extension of the Quantum Theorem of Cor-

0 superconductivity in metals,
responding States recently developed by Nosanow

o superfluidity of both helium isotopes,

and co-workers /11-13/. This theorem was origi- and

nally proposed by de Boer /14/ and its initial
applications carried out by the him and his
co-workers /15/. The first discussion of

o the existence of the liquid phase of both
helium isotopes at zero temperature.

They also exhibit phenomena, which are due to
quantum effects, but do have classical analogs:

spin-polarized atomic hydrogen using the quantum
theorem of corresponding states was given by

Hecht /01/. Thus, a general, over-all picture

o the 1liquid-to-crystal phase transition
which occurs in both helium isotopes at

systems will be presented and then corresponding zero temperature, and

of the thermodynamics of macroscopic quantum
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o the phase separation which occurs in both
solid and liquid mixtures of the helium
isotopes.

There are two aspects of quantum mechanics which

give rise to these effects:

0o the quantum-mechanical zero-point kinetic
energy (energetics), and

0 the symmetry of the
(statistics).

wave function

This review will emphasize those aspects of

macroscopic quantum systems which depend more

strongly on energetics than they do on
statistics.
The most important aspect of the physics of

macroscopic quantum systems is that the zero-
point kinetic energy per particle is comparable
to the magnitude of the potential energy per

particle. This fact has several consequences:

0 the binding energy of the system is much
less than the magnitude of the potential
energy,

0 the density of the system is small com-
pared to the density of a "classical”
system, and

o the ground state of the system can, as a
consequence, be a solid, a liquid, or a
gas!

There are also important aspects of the physics
of macroscopic quantum systems that are due to
statistics:

o there is an "effective" interaction
caused by the statistics -- it is repul-
sive for fermions and attractive for bo-
sons and introduces strong correlations
between the particles in both cases, and

o there is a characteristic temperature at
which the effects of statistics become
important -- it is of the order of
92/3/kBm (p is the number density, kB is

Boltzman's constant, and m is the mass of
a particle) -- for an ijdeal Fermi gas,
this is the Fermi temperature, whereas,
it is the Bose-Einstein condensation
temperature for an ideal Bose gas.

These are only a few of the most
aspects of the physics of macroscopic quantum
systems.

important

Phenomenological Interactions. This work will
focus on a class of systems of which the fol-

Towing are the known examples:
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o the isotopes of helium (3He, 4He),

o the isotopes of molecular hydrogen (H2,
2)’

0 thg heavy rare gases {Ne, Ar, Xe, Kr),
an

0 the isotopes of spin-polarized atomic
hydrogen (H+,D4).

Although it is possible, in principle, to calcu-
late the pair interaction for these systems,
this has been achieved only for H+ and D+ /16/.
Many phenomenological interactions
constructed for these systems. The more recent
of these appear to be quite accurate /17,18/.
For all calculations reported in this work, the
well-known Lennard-Jones
i.e.,

have been

potential was used;

v(r) = ge[(o/r)1% _ (o/r53,

where ¢ is the depth of the well and ¢ is the
so-called collision diameter. Values of these
parameters and the quantum parameter n = M2/ms02
are given in Table 1 for the class of systems
under consideration.

Substance o n
deg A
-1
He 5.47 x 10
6.46 3.69 1
D+ 2.74 x 10
e 2.41 x 1071
. 10.22  2.56 _1
He 1.82 x 10
H, 7.63 x 107
37.0  2.92 2
D, 3.82 x 10
Ne 35.6  2.74 9.00 x 1073
Ar 120.0  3.41 8.70 x 10°*
Kr 163,  3.65 2.67 x 1074
Xe 232,  3.98 1.00 x 107
Table 1: Values of the Lennard-dJones parameters

for the rare gases, molecular hydrogen, and
spin-polarized atomic hydrogen. The latter are
obtained by fitting the potentials /03/ calcu-
lated by Kolos and Wolniewicz /16/.



A few comments on these recently developed, more
accurate phenomenological potentials are in
order. The parameters for the "best" of these
as judged by the authors are shown in Table 2.

Several observations are apparent:

o the well depth is larger in each case,

o the ‘“"core diameter” is smaller, except

for He and Ne, and

o the values of n are roughly 15% Tlower,
except for those for Ht and D*, which are
unchanged.

These results will have an importannt bearing on
the assessment of the validity of conclusions to
be drawn in later sections of this work.

€ g
Substance o n
deg A
-1
K4 5.47 x 10
6.46  3.69 1
D+ 2.74 x 10
e 2.122 x 107}
4 10.85 2.643 1
He 1.599 x 10
Ne 42.0  2.764 7.498 x 1073
Ar 142.1  3.351 7.613 x 1071
Kr 201.9 3.569 2.251 x 10‘4
Xe 281.0  3.885 8.714 x 107
Table 2. Values of constants for recently

developed phenomenological potentials. Those
for the heavy rare gases are taken from Barker
/17/, those for helium from Aziz, et al. /18/,
and those for spin-polarized atomic hydrogen are
unchanged because the calculations /16/ are re-
garded as accurate to one percent. Results for
the isotopes of molecular hydrogen /19/ are not
included because they are not consistent with
the rest of the results. It is important to
note that the analytic form of the phenomeno-
logical potential varies siightly from substance
to substance.

Quantum Theorem of Corresponding States. The
quantum theorem of corresponding states was

originally proposed by de Boer /14/ and dis-
cussed by him and his coworkers /15/. The
fundamental physics underlying this theorem is
that there is a class of systems such that the
potential energy of the system is proportional
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to a coupling constant e with the dimensions of
energy, that all lengths in the potential energy
scale with one length parameter o, and that all
other constants in the potential are the same
for this class of systems when expressed dimen-
sionlessly. Thus the potential energy N({ri“}),
where Tia is the « th component of the position
of the i th particle, may be written

”(‘”iu}) = e“*(‘”ia/°}’ {c;}), (1)
where W* is a dimensionless function of its
arguments and (c;} stands for the set of other
dimensionless constants. It is important to
note that Eq. (1) does not require that W be
expressible as a sum of pair potentials. In his
review article, Barker /17/ discusses the impor-
tance of three-body interactions and compares
the values of the {c;} for a number of systems.

To derive the theorem, consider the Hamiltonian

H= (-Ko/2m) 3 (az/arzia) +Wr, 1) (2)

i,a

With the use of Eq. (1), the introduction of the
dimensionless variables Xia™ ria/°’ and the
definitions

“+
n

(-1/2) 3} (a%/ai,,)

1,a

=
"

* *
= W ({x; 0}, (ch))

Mz/meu2 = (A*/Zﬂ)z,

]
n

where A* = h/a(ms)l/2 is the de Boer parameter,
the Hamiltonian may now be written in the form

H=¢e¢ {(nt + w). (3)

The use of Eq. (3) in the partition function

leads straightforwardly to the usual statement
of the theorem; i.e.,
F* = F* (T*, V*, q), (4)

where the following dimensionless or “"reduced"
variables have been introduced:

T = kpT/e, V* = V/No® = 1/p%,
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P* = Poo/ec, F* = F/Ne,

and T is the temperature, V is the volume, P is
the pressure, and F is the Helmholtz free ener-
dgy. The form of the reduced Helmholtz free
energy depends only on two things:

o the form of w*({xia}’ (c;}), and

o whether the system obeys Bose-Einstein or
Fermi-Dirac statistics.

Thus,

dynamic properties can be plotted on Jjust two

graphs -- one for Bose-Einstein statistics and

Values of the

quantum parameter n are given in Table 1 for

for this class of systems, all thermo-

one for Fermi-Dirac statistics.

Lennard-Jdones potential
important to remember that n depends on four
constants in the form n = M2/mec2, which is the
only possible dimensioniess combination of these
constants.

parameters. It is

Let us now discuss the physical significance of
the quantum parameter n. For this intuitive
discussion, it is sufficient to approximate the
system with a "cell" model, in which each par-
ticle is viewed as moving in a "cell" formed by
its nearest neighbors. Let us introduce 4, the
average distance between particles. The follow-
ing crude estimates of the kinetic energy per
particle K and the potential energy per particle
#l can be made:

#e/2m(8-0)?

~
e

e

|0 =6 v(a),
where v(r) is the pair potential and the number
of nearest neighbors 1is taken to be 12. It

follows that

R71H) = n fa(ve), (5)

where fn(x) is some function of x. In this case
n is proportional to the ratio K/|W|; in gener-
al, it is intuitively clear that n is a measure
of this ratio and that this 1is the physical
significance of n. This result is most signifi-
cant, because it is just the value of K/|W|;
j.e., of n, which determines the extent to which
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macroscopic quantum systems manifest quantum
effects.

Extended Quantum Theorem of Corresponding
States. The very form of the theorem, Eq. (4),
and the physical significance of n, Eq. (5),
suggest that it would be most useful to consider
n as an independently variable continuous para-
meter and to treat it as a "conceptual” thermo-
dynamic variable.

To do this, it is necessary
to extend the usual thermodynamic space to
include the additional variable n, so that one
may now consider, for example, P*-T*-n space
instead of the usual P*-T* space. In this vein,
it is straightforward to construct the thermo-
dynamic variable conjugate to n and thence to
derive the analogs of the usual thermodynamic
relationships (Gibbs-Duhem, Clausius-Clapeyron,
etc.). This structure then constitutes the
extended quantum theorem of corresponding
states.

On intuitive physical grounds, it is clear that,
although the free energy is a continuous func-
tion of n, its derivatives with respect to n are
not necessarily continuous. After all, as n is
increased from the value for Ar to the value for
He, the ground state changes from solid to lig-
uid. Thus, it is to be expected that there will
be values of n at which "phase" transitions oc-
cur. This view suggests that it would be useful
to construct phase diagrams in P*-T*-n space and
that these would give a general view of the
phases of macroscopic quantum systems. Such an
approach has the utility that it is often pos-
sible to calculate accurately the values of n at
which transitions occur; then it is possible to
predict the phase behavior of real systems sim-
ply by comparing the value of n for the real
system with the calculated values of n at which
phase transitions occur.

Let us now introduce the “thermodynamic" vari-

able conjugate to n. The usual equation for the

Helmholtz free energy is
dF* = - S* dT* - P* dy* + ¢* dn, (6)

where

o* = (aF*/a")T*,V*' (7)



If Eq. (3) is used in the partition function,
then Eq. (7) with the use of the finite tempera-
ture Feynman-Heliman theorem /11/ yields

% = <EO/N, (8)

where the average in Eq. (8) 1is the standard
statistical mechanical average. This result is
easily understood from the form of Eq. (3) by
analogy with the form of the Hamiltonian for a

system in a magnetic field, H= - B » M, where B
is the magnetic field, M is the magnetic moment
operator, and the thermodynamic variable con-

Jugate to B is <M.
n can also be viewed as an

Thus, the quantum parameter
"external field"
which can change the kinetic energy of the sys-
tem independently of the potential energy.

Once the conjugate variable is defined, the full
formalism of statistical mechanics and thermo-
dynamics can be utilized.

results /13/ are as follows:

Several interesting

0 a new statistical mechanical ensemble can
be constructed in which ¢* is the inde-
pendent variable and only average values
of n are meaningful,

o the Gibbs phase rule in this extended
thermodynamic Space becones

D=C-P+3, (9)

where D is the number of degrees of free-
dom, C is the number of components, and P
is the number of phases -- thus in this
"conceptual" space there can be a quad-
ruple point for a one component system!
-- there is no conflict with ordinary
thermodynamics, which applies only in a
physical subspace in which n is fixed,
and

o the analog of the Clausius-Clapeyron
equation at zero temperature is

(dp*/d“)c = - (¢f - ¢f1)/(vf - V’fI)a

where the derivative is taken along the
coexistence curve, and the subscripts I
and II refer to the two coexisting
phases.

(10)

This completes the discussion of the extended
quantum theorem of corresponding states.

Thermodynamic Properties of Macroscopic Quantum
Systems. In this section, the thermodynamic
properties of macroscopic quantum systems will
be treated from a unified point of view utiliz-
ing the extended quantum theorem of correspond-
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ing states.
three parts:

The presentation is organized into

0 ground-state results,
o triple-point and critical-point data, and
0 generalized "phase" diagrams.

This point of view has been used to treat other
aspects of macroscopic quantum systems, such as
itinerant ferromagnetism /20/, quantum solutions
/21/, and two-dimensional systems /22/. These
aspects will not be discussed in this review.

The ground-state results which we will discuss
were obtained from variational calculations of
the ground-state energies of fluid and solid
Bose and Fermi systems /11-13/ as a function of
the quantum parameter n. They are summarized in
Table 3 and Figure 1. The main factor respon-
sible for the general features of these results
is the energetics of these systems. Since the
quantum parameter n « R/|W|, there are three

regimes:

o "small” n -- the ground state is
crystalline,
o "intermediate" n -- the ground state is

liquid, and

o "large" n -- the kinetic energy is
dominant and the ground state is a gas;

i.e., an unbound, many-body quantum

system.
Property Statistics Critical n
Liquid-Solid Bose 0.14
Transition (P* = Fermi 0.18
Liquid-Gas Bose -~
Transition (P* = Q) Fermi 0.29
Critical Point Bose 0.46

Fermi 0.33

Table 3. Critical values of the quantum
parameter n for ground-state transitions. The
values for the 1iquid-solid transition are also
the values of n for which the triple-point tem-
perature goes to zero; they have been adjusted
to fit the experimental zero-temperature solidi-

fication pressures /13/ for 3He and fHe. The
other values are taken from Miller, et al. /12/.
The value for the Bose critical point was shown
to be exact by Bruch /23/.
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Figure 1. Ground state P*-n phase diagram for

Bose and Fermi macroscopic quantum systems. The
left- and right-hand pressure scales are for the
liquid-solid and the liquid-gas curves, respec-
tively. The results are taken from Nosanow, et
al. /11, 13/ and from Miller, et al. /12/.

In addition, there are also important effects
due to statistics:

o the solidification pressure for a given
value of n is higher for a Bose system
than for a Fermi system -- this result is
due to the higher energy of a Fermi
liquid because of the kinetic energy of
the Fermi sea /11/, and

o the liquid and gas phases can coexist for
a Fermi system at zero temperature;
whereas, these phases cannot coexist for
a Bose system at zero temperature --
again this result is due to the kinetic

energy of the Fermi sea /12/.
Thus, an important result of these calculations
is that the general features of the ground-state
thermodynamic properties of these systems depend
only on the "physics" of these systems and not
on the details of the calculations. The precise
numbers do, of course, depend on these details
as well as on the phenomenological potential.
We believe that the numerical results describe
the real physical systems with an accuracy of
approximately ten percent, because this is
probably a good estimate of the accuracy of n

itself as shown in Tables 1 and 2.

Let us now turn to a discussion of the critical
points and triple points of the class of systems
under consideration. Corresponding states plots
of the reduced temperatures, pressures, and den-
sities are given in Figures 2, 3, and 4, respec-
tively. These thermodynamic quantities are "re-
duced" (i.e., brought into dimensionless form)
using the Lennard-Jones potential parameters
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given in Table 1. 1In addition, the results of

the ground-state calculations, summarized in
Several

important points emerge from these graphs:

Table 3, are included in these Figures.

. .
’ S
CRITICAL POINTS

1.0F

08k

TRIPLE POINTS:

0.6~

REDUCED TEMPERATURE T*

02

t t t
Xe Kr Ar Ne
00 1 2

103 1072 10-1

QUANTUM PARAMETER n

Figure 2. Plot of the reduced critical and
triple-point temperatures versus the quantum
parameter n. The data for the rare gases is
taken from Crawford /24/ and that for the Hy

isotopes from Roder, et al. /25/. The solid
curves are only a guide to the eye.

0 the reduced values for the heavy rare
gases are independent of n, thus confirm-
ing the applicability of corresponding
states to these systems,

o all of these vreduced quantities
eventually decrease with increasing n --
this result is understandable intuitively
in terms of the increase in the zero-
point kientic energy, so that the system
requires less thermal energy or less

12p . 430

CRITICAL POINTS

2.5

-20

]
41.5
TRIPLE POINTS

REDUCED PRESSURE p* ¢ x 102}

4 t 4

Xe Kr Ar
o . . L 0.0
1074 1073 1072 1071 109
QUANTUM PARAMETER n
Figure 3. Plot of the reduced critical and

triple-point pressures
parameter n. The data

versus the quantum
are obtained as for

Figure 2. The left- and right-hand scales are
for the critical and triple-point pressures,
respectively.

REDUCED PRESSURE p* ¢ X 103}
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Figure 4. Plot of the reduced critical and
triple-point densities versus the quantum
parameter n. The data are obtained as for
Figure 2.

4

3He

tt ot t
D2 HD Hz  4He

pressure to effect the transition in
question,

o for sufficiently large values of n, the
effects of statistics cause the curves to
bifurcate -- again these results can be
understood intuitively in terms of the
effective repulsion between fermions and
the effective attraction between bosons,
so that the critical temperatures and
pressures are lower for fermions than for
bosons, and

0o in all cases, the curves vanish for a
critical value of n -- thus, systems with
sufficiently large values of n will be-
have 1like a fluid above its critical
g?int at all temperatures including T =

A close look at these graphs also reveals some
nagging discrepancies:

o the values for the reduced pressures and
densities for Ne are not the same as
those of the other heavy rare gases, and

o the values for the isotopes of H2 and He
appear to be a bit irregular.

In our opinion, these discrepancies are due to
inadequacies in the phenomenological pair poten~
tial. If the parameters determined by Barker
/17/ are used, the Ne discrepancies disappear
because of the improved accuracy of the length
parameters. The irregularities 1in the hydrogen
and helium curves probably have the same source;
however, an internally self-consisten°t set of
phenomenological potentials has not yet been
developed for these systems, so that the
question still remains open for these two cases.

With these results, it is now straightforward to
construct the P*-T*-, phase diagrams for Bose

c7-7

and Fermi systems /13/. These are given on Fig-
ures 5 and 6. Experimental data (Crawford /24/
and Roder, et al. /25/) are used for the P*.T*
phase diagrams for A, H2, 4He and 3He and the
theoretical results given in Table 3 are .used
for T* = 0. Figures 2 and 3 are projections of
these curves on to the T*-n and P*-n planes,
respectively. Thus, the intuitive physical
arguments given to gain an understanding of
their behavior also obtain for Figures 5 and 6.
Thus, we believe that these phase diagrams give
a qualitatively correct and reasonably accurate
quantitative picture of the solid, liquid and
gas phases of Bose and Fermi macroscopic quantum
systems.

It is of interest to examine the P*-T*-n phase
diagram for Bose systems from the point of view
of the Gibbs Phase Rule, Eq. (9).
there are four phases which need to be consider-
ed -- solid, liquid, gas and superfluid. In

Clearly,

this “extended" thermodynamic space, there is
already a line of triple points where the solid,
liquid, and gas coexist. The reduced X-point
temperature for 4He at saturated vapor pressure
can easily be determined and another line of
triple points (1liquid-gas-superfluid) construct-
ed through it using the intuitive physical idea
that the reduced Ar-point temperature is propor-
tional to the quantum parameter n. The point
where these two lines cross is the quadruple-
point, and the third line of triple points
(solid-Tiquid-superfluid) can be constructed to
pass through this point. This construction does
not prove that a quadruple point must exist;
only that it can exist. There will, of course,
be a Bose-Einstein condensation in the gas
phase; however, this is not pictured in Figure
5.

The P*-T*-n phase diagram for Fermi systems is
very much like that for Bose systems. The cri-
tical point occurs at a smaller value of n and
there is a liquid-gas coexistence curve at zero
temperature. Both of these results are due to
the kinetic energy of the Fermi sea /12/. There
is, of course, an extensive structure, which is
not shown, due to the existence of superfluidity
in 3He. In addition, there is another extensive
structure, which is not shown, due to the pos-
sibility of itinerant ferromagnetism in Fermi
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FO! /
//
BOSE K
STATISTICS o
1
Figure 5. Phase diagram for Bose macroscopic

quantum systems in P*-T*- space. Experimental
data are used for the A, H, and 4He curves. The

value for the 4He A -point is that at the
saturated vapor pressure. The zero-temperature
results are taken from Table 3. The figure is
constructed so as to show how a quadruple point
could exist. The curve for the Bose-Einstein
condensation temperature for H is taken from
Stwalley and Nosanow /03/.

systems. This subject is discussed by Guyer and
Miller /20/.

This completes our discussion of the thermo-
dynamic properties of macroscopic quantum sys-
tems. Use of the extended quantum theorem of
corresponding states enables one to form a uni-
fied, over-all view of these properties. It is
worth emphasizing that these results depend only
on the “physics" of these systems and not on
theoretical details. Thus, they are of general
validity and certainly qualitatively correct.
We believe that they quantitively describe real
systems to an accuracy of approximately ten
percent.

Spin-Polarized Quantum Systems. In this Section
the formalism developed in the previous Sections
will be used to predict some of the thermodynam-

0.18—
016 IélNE OF
RITICAL
" POINTS
0.14
& 012
z Hz
2
2 0.10
w
&
Q /
w 0.08
g <
o
w
© 0.06
0.04
0.02
GAS
0
0 LiQuUID
SPIN 3He
POLARIZED
ALE i
Dt
FERMI
CRITICAL
STATISTICS | END POINT
Figure 6. Phase diagram for Fermi macroscopic

quantum systems in P*-T*-xn space. Experimental
data are used for A, H2 and 3He curves. Data
for A and H2 are used because Figures 2, 3 and 4

show that the effect of statistics is unimpor-
tant for small n. The results for D* are taken
from Miller and Nosanow /26/. The spin-polar-
ized scale is discussed in the Section on spin-
polarized quantum systems.

ic properties of spin-polarized quantum systems.
First, H+ and D+ are discussed in general. Then
a corresponding states discussion of the proper-
ties of their fluid phases is given. After that
a rather speculative discussion of the proper-
ties of solid H+ and D+ is presented. Finally,
spin-polarized 3He is briefly discussed.

Let us first consider spin-polarized atomic
hydrogen and deuterium in general. It is
believed that H+ obeys Bose statistics because
it is a tightly bound system of two fermion (one
proton and one electron); whereas, D+ obeys
Fermi statistics because it is a tightly bound
system of three Fermions (one proton, one
neutron and one electron). This problem is
fundamentally the same as that of the statistics



3He and 4He and has been extensively

discussed by Girardeau /27/. A cursory look at
Table 1, shows that H+* has the largest n of all
of the systems and should therefore manifest

obeyed by

quantum effects most strongly on a macroscopic
scale. On the other hand, D+ has a value of n a
1ittle larger than that for 3He and hence should
behave very much like it.

We shall now consider the fluid phases of H#+.
Because n(H+) = 0.55 and the value of the zero
temperature critical point for Bose systems is
n(Bose critical point) = 0.46, the corresponding
states analysis predicts that H+ will be a gas
at zero temperature and will behave like a fluid
above 1its critical point for all temperatures
including zero temperature! This means that Hs
is predicted not to have a liquid phase; i.e.,
there can not be coexisting liquid and gas
phases for H+ under any conditions. This pre-
diction is strengthened by the fact that the
exact values of n are expected to be roughly 15%
lower than the Lennard-Jones values for all sys-
tems other than H* and D* (see Tables 1 and 2).
It is, of course, expected that this quantum gas
will exhibit a Bose-Einstein condensation to
become a superfluid gas /01-03/. Results of
recent calculations by Lantto and Nieminen /28/
are shown on Table 4.

Since H+ is a weakly interacting Bose gas, the
usual theory should apply /29/. In addition, it
should be possible to make a clear cut
observation of the Bose condensate.

We shall now consider the fluid phases of D+.
Because n(D+) is very close to n(3He), its
properties may be very like those of 3He. How-
ever, it may be that use of accurate phenomeno-
logical pair potentials would reduce the cri-
tical values of n for Fermi systems given on
Table 3 by roughly 15%, in which case n (Tiquid-
gas) = 0.25 and n (critical point) = 0.28.
If this were true, the n for D+ would fall in
between, and Dt would have a gaseous ground
state and the possibility of liquid-gas
coexistence at zero temperature! In this event
it might be possible to observe quantum effects
on the singularities of thermodynamic functions
in the neighborhood of the critical point /13/.
It s, of course, expected that D+ will exhibit
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P vm TBE n Bmin
102 /em’ o deg c kG
0.2 3027 0.55 0.95 6
0.5 1209 1.01 0.89 17
1.0 605 1.60 0.81 38
Table 4. Properties of H+ calculated by Lantto

and Nieminen /28/.

. Here p» is the number
density, Vm

is the molar volume, Tse is the
Bose-Einstein condensation temperature, and ne
is the zero temperature condensate fraction
2/3 - .
te that Ty = .
(note that Tpe = o™'7).  The quantity B . is

the _magnetic field necessary to stabilize H¢
against decay due to collective excitations
first studied by Berlinsky, et al. /06/.

a phase transition to a superfluid state at
temperatures of the order of 1 mK. This
behavior should be completely analogous to that
of %He; e.g., there should be both A and B
phases. This behavior would still be expected

even if D* were to be gaseous.

Let us now try to predict the properties of
solid H+ and D+ using corresponding states

arguments. This 1is necessarily a rather
speculative endeavor. In the first place,
Berlinsky, et al. /06/ have shown that very

large magnetic fields are necessary to stabilize
the solid against decay due to collective ex

citations. In addition, the only existing data
/11, 13/ refer to the liquid-solid transition;
not to the liquid-gas transition. Nevertheless,
the properties of the solid at the liquid-solid
transition appear to be dominated by the proper-
ties of a hard-sphere system with the size of
the sphere renormalized by the effects of ener-
getics. Thus, we believe that the results will
certainly be qualitatively correct, and the
numbers may serve as a guide to experiments. It
is possible to make estimates of the zero tem-
perature solidification pressure Ps’ the volume
VS of the solid at this pressure, and the zero-
temperature Debye Theta eo.
estimated from Figure 1.

The. former can be

One finds that for
both Bose and Fermi systems
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8 Pr« 7.5 (n).

In addition, Nosanow, et al. /11/ found that Vg
rapidly approached an asymptotic value as a
function of n, so that it is approximately
constant for He and H. Finally, a crude
estimate of 60 can be obtained from the
approximate result that

e;(V*) * N>

which follows from Greywall's results /30/,

where eg = kBeo/e and the proportionality only
holds at constant V*. The results are given in
Table 5 along with those for
comparison.

3He and 4He for
Several points emerge from Table 5:

o the conversion factors s/o3 and N003

differ significantly for He and H because
the value of o is much larger for H than
for He,

o thus, the molar volumes at solidification
of solid H+ and D+ are predicted to be
very large, with the consequence that the
nearest-neighbor distances are quite
large -- these solids would be quite open
structures,

o similarly, the solidification pressures
are relatively low, in the case of D+
only 12 atm, and

o the ® for D+ is also quite low, which is

to be expected due to the Tlarge zero-
point kinetic energy; the eo for Ht may

be quite large, but the extrapolation is
probably unreliable.

A few other comments are in order:

o the coefficient of thermal expansion
should be quite low because these systems
exist at temperatures such that the
thermal kinetic energy is small compared
to the zero-point kinetic energy,

o the sound velocities and phonon spectra
should look pretty much like those for

either bcc 3He or 4He -~ the magnitudes
should scale roughly with the eo's, and

o exchange effects due to the symmetry of
the wave function should be larger than

for 3He; however, this exchange inter-
action 1is small compared to the elec-
tronic singlet-triplet exchange -- there
would be a 1large coefficient of self
diffusion which might be detectable by a
resonance technique in a weakly
inhomogeneous magnetic field.
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Property H+ 4He D+ 3He
n 0.547 0.182 0.274 0.241
¢/a° 17.5 83.89  17.5 83.89
{atm)

N003 30.2 10.06 30.2 10.06
(cm3/mole)

P:(T*=0) = 3.1 0.298 = 0.7 0.405
PS(T=0) = 54. 24,97 = 12. 33.95
(atm)

Vg(T*=0) = 2.1 2.091 = 2.4 2.409
VS(T=0) =~ 63, 21.04 =« 73. 24.23
(cm3/mole)

a(bcc) = 5,1 3.57 = 5.4 3.74
)

eg{T*=0) = 5.3 1,78 = 2.1 1.84
eo(T=0) = 34. 19.0 = 14. 18.5
(deg)

Table 5. Corresponding states estimates of

properties of solid H+ and D+. The properties
of solid 3He and 4He are included for compari-
son. Here N0 is Avogadaro's number, PS and VS

are, respectively the pressure and volume of the
solid at solidification, and A is the nearest-
neighbor distance. The helium volume and pres-
sure data are taken from Crawford /24/. The
Debye e0 data are taken from Greywall /30/.

Finally, it is of interest to speculate further
on the possibility of observing “supersolid"
behavior in solid H+ and D+. One might think
that this would be possible because of the low
density and high zero-point kinetic energy of
these systems. However, as commented earlier V;
rapidly approaches an asymptotic value as a
function of n as n increases. Since it may be
the reduced quantity which determines super-
solid behavior, this fact may mitigate against
the occurance of this behavior in H+ and D+,

In conclusion, let us turn to a brief discussion
of spin-polarized 3He. The essential physics of
this system is that in the presence of a suffi-
ciently large external magnetic field only one



half of the spin states of the Fermi sea will be
populated. Although the actual calculations are
quite complicated, the general features are easy
to obtain. If one considers only the ideal
ground state energy, then we find that only the
ratio n/gz/3 appears, where g is the spin degen-
eracy. Thus, to a first approximation, a calcu-
lation for all n for g = 1 can be deduced from a
calculation for all n for g = 2 by simply
stretching the scale of the quantum parameter 0.
Miller and Nosanow /26/ found that the change
from g = 2 to g = 1 did not affect things too
much. Thus, this effect is pictured on Figure 6
by a modest stretching of the n scale. It is
clear that the qualitative features of the
P*-T*-n phase diagram are unchanged. Possible
effects on the melting curve and other proper-
ties have been discussed by Lhuillier and Laloe

/07/.

A Last Remark.
quantum system is found, it is worth examining
its possible utility as a refrigerant. In this
respect H may very well be unique, because it
may be the only substance that remains gaseous
at all temperatures, even absolute zero. Thus,
if it were once coolad below its Bose-Einstein

Whenever a new macroscopic

condenstaion temperdture, its use as a refriger-
ant would, 1in principle, permit the attainment
of temperatures arbitrarily close to absolute
zero.
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