Energy levels of FB(Na)-centre in KCl

C. Ong

To cite this version:

C. Ong. Energy levels of FB(Na)-centre in KCl. Journal de Physique Colloques, 1980, 41 (C6), pp.C6-88-C6-90. <10.1051/jphyscol:1980623>. <jpa-00220061>
Energy levels of F_B(Na)-centre in KCl

C. K. Ong
Physics Department, Ahmadu Bello University, Zaria, Nigeria

Résumé. — Nous avons calculé les énergies des bandes d’absorption du centre F_B(Na) dans KCl par la méthode du réseau statique. On utilise le pseudo-potentiel approximatif de Bartram et al. avec le facteur semi-empirique α pour les effets de la grosseur des ions. En utilisant les valeurs $\alpha = 1$ pour tous les cations et $\alpha = 0.53$ pour tous les anions, on obtient un bon accord avec l’expérience pour la séparation en énergie des bandes d’absorption, mais l’énergie de la bande F_B2 est 0.8 eV plus élevée que celle trouvée expérimentalement. La distorsion de l’état fondamental et les effets de la grosseur des ions sont importants pour la détermination de la séparation des bandes d’absorption.

Abstract. — We have performed the calculation for the absorption energies of F_B(Na)-centre in KCl by using the lattice static method. The Bartram et al. approximate pseudopotential with semi-empirical factor α is used for ion size effect. We found that $\alpha = 1$ for all cations and $\alpha = 0.53$ for all anions give the absorption splitting agrees well with experiments but the F_B2-absorption energy is about 0.8 eV higher than the experimental value. We found that both the ground state distortion and ion size effect are important in determining the absorption splitting.

1. Introduction. — The F_B-centre is an F-centre adjacent to two substitutional impurity cations in the alkali halide crystal. The F_B band with two peaks appears when a moderately sodium — doped KCl crystal is exposed to F light at room temperature [1, 2, 3]. A model for the lattice configuration of F_B-centre responsible for the observed F_B band has been proposed by Schneider [2]. The F-centre lies between the two substitutional impurity cations (Fig. 1).

The F_{B1} band involves the transition from 1S to the 2P — like unrelaxed state along the y-axis, overlapping with two impurity cations. The F_{B2} band arises from the transition from 1S to the two — fold degenerate 2P — like unrelaxed state along the Z-axis. Schneider [2] also discussed the other probable lattice configuration for the F_B(Na)-centre in KCl, where the F-centre lies next to the two nearest neighbour Na$^+$ cations.

2. Theory. — We follow the theoretical model, approximation and methods developed by Ong and Vail [9] for the calculation of the F_A-centre in alkali halides with NaCl structure. The basic theory is pseudopotential and the variational procedure is used to minimize the estimated energy with respect to the pseudo-trial wave function parameter λ and the distortion field ξ self-consistently. We include the vacancy and two substitutional impurity cations as region I. The displacement of the ions in region I is
denoted as u, and the rest of the lattice as region 1.
Their displacement is described by ξ.

Details of the distortion field near the F_1-centre is calculated by using the lattice static method in which the displacement ξ is expressed as

$$\xi = A^{-1} \cdot F(\lambda_0, \xi, u)$$ \hspace{1cm} (1)$$

where A is the force — constant matrix; F is the force due to the defect and λ_0 is a variational parameter describing the excess electron. The distortion field is therefore made self-consistent with the parameter of the variational wave function.

We use a simple variational wave function with Gaussian localization for the excess electron. We have used the following trial wave functions:

Vacancy ground state

$$\phi_1 \sim e^{-1/2r^2}$$ \hspace{1cm} (2)$$

F_{A1}-absorption

$$\phi_2 \sim r e^{-1/2r^2} \cos \theta_\gamma = ye^{-1/2r^2}$$ \hspace{1cm} (3)$$

F_{A2}-absorption

$$\phi_3 \sim r e^{-1/2r^2} \cos \theta_\zeta = z e^{-1/2r^2}$$ \hspace{1cm} (4)$$

The estimated energy of the F_1-centre in a state ϕ can be written as

$$E = \langle \phi | \mathcal{T} + V_p + V_{\text{in}} | \phi \rangle + V_L(\xi, u) + (d,e)$$ \hspace{1cm} (5)$$

where \mathcal{T} is the excess electron's kinetic energy operator; V_p is the Coulomb potential energy of the excess electron with the point ion lattice; V_{in} is the ion size correction of Bartram et al.; V_L is the energy to create the lattice defect from the perfect lattice and (d,e) is the distortion energy contributed by region II ions.

3. Results. — In using Bartram et al.'s approximate pseudopotential for ion size correction, one has to choose a suitable value of the semi-empirical factor α to be multiplied with the pseudopotential coefficients. We present four sets of results according to a

$$\alpha = 0.53 \quad \alpha = 1 \quad \alpha = \alpha^{(e)} \quad \alpha = \alpha^{(i)}$$

In table II, we analyse the role of impurity cations in F_1-centres, with respect to F_1-centres, by comparing the various contributions from the kinetic (\mathcal{T}), point-ion (V_p) and ion-size (V_{in}) energies to the various absorption energies, for the form of ion size correction with $\alpha = \alpha^{(e)}$. The result for F_1-centres comes from the work of reference [9] but was not reported there. The main difference between the methods used in this work and those in reference [9] is that two substitutional cations are included in region I instead of the one cation in reference [9]. For $(F_{A1} - F_{B1})$ energy differences, we find that the second impurity cation lowers the ion-size energy and increases the point-ion energy, because the impurity cation is small in size and relaxes outward by more than the nearest neighbour cation in the F_1-centre. Thus the point ion interaction between the excess electron and the nearest neighbour is higher in F_{A1} than F_{B1}. For $(F_{A2} - F_{B2})$, where the excess electron
is not overlapping with the impurity ions, the major contribution comes from the point-ion energy. We conclude that the effect of the second substitutional impurity cation on the absorption energy comes not only through its ion-size difference but also through the detail of its ground state distortion field. However, we have only included the electron energy of \(FA \) and \(F_A \)-absorption in table 11, and should be able to explain the difference of the observed absorption energies. By including the lattice energy \((V_L + d.e) \), the calculated \((F_A - F_A) \) becomes -0.6 eV, in contrast to the observed 0.17 eV. We feel that this is probably due to the accuracy of calculating \(V_L \) and the neglect of the ionic polarization.

One of the nice features of our calculation is that we are able to give the displacement of the ions near the defect self-consistently to the electronic wave function. Some of the calculated displacements for the ions in the coordinate axis, as shown in figure 1, are given in table III for \(a = a^{\pm} \). The two impurity cations relax outward about 4 % and the four nearest neighbour host cations squeeze in the vacancy by 7 %.

DISCUSSION

Question. — H. J. PAUS.

With your calculation you get an inward relaxation of the host lattice ions around the \(F_A \)-centre and an outward relaxation of the impurity ions. How does this situation compare with the simpler \(F_A \) or the \(F \)-centre itself. From simple considerations of the ionic charge arrangement and the binding properties of the electron I would suspect the reverse to be true?

Reply. — C. K. ONG.

By using the similar model and methods we have found that the nearest neighbour relaxed inward by 5 % in \(F \)-centre \(KCl \) (Phys. Rev. B. 15 (1977) 3898) and relaxed inward by 4 % in \(F_A(\text{Na}) \)-centre in \(KCl \) (Ref. [9]). The displacements of the ions are determined by the forces, due to the defect acting on it. Different forms of ion-size correction and interionic potential would give different displacements.

References