PROPERTIES OF NON-CRYSTALLINE EuIG AND DyIG OBTAINED FROM MÖSSBAUER AND MAGNETIZATION MEASUREMENTS

F. Litterst, J. Tejada, G. Kalvius

To cite this version:

HAL Id: jpa-00219792
https://hal.archives-ouvertes.fr/jpa-00219792
Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PROPERTIES OF NON-CRYSTALLINE EuIG AND DyIG OBTAINED FROM MÖSSBAUER AND MAGNETIZATION MEASUREMENTS

F.J. Litterst, J. Tejada and G.M. Kalvius

Abstract - Non-crystalline (nc) EuIG and DyIG have been prepared by dc-sputtering. Mössbauer data on 57Fe, 151Eu and 161Dy reveal sharp magnetic transitions at $T_m = 62$ K and 70 K for nc EuIG and DyIG, respectively. The 57Fe hyperfine (hf) spectra consist of three superpositioned patterns for Fe^{3+} in tetrahedral and octahedral and for Fe^{2+} in tetrahedral oxygen coordination. The saturation hf fields are reduced compared to the values of the corresponding crystalline materials. The induced hf field at 151Eu is only 1/8 of that for crystalline EuIG. The microchemical composition and structure of the nc materials can be satisfactorily explained by a small oxygen deficiency due to preferential oxygen sputtering. Macroscopic magnetization suggests ferrimagnetic order possibly of sperimagnetic type. Although a part of the deviations of the magnetic hf parameters from the values for the corresponding crystalline substances can be explained by a distribution in the molecular field, the strong reduction of T_m must be attributed to a decrease of the average molecular field due to the distorted superexchange bonds.