MÖSSBAUER AND MAGNETIC INVESTIGATIONS OF Y(FexAl1-x)2

W. Steiner, R. Haferl, R. Grössinger

To cite this version:

W. Steiner, R. Haferl, R. Grössinger. MÖSSBAUER AND MAGNETIC INVESTIGATIONS OF Y(FexAl1-x)2. Journal de Physique Colloques, 1980, 41 (C1), pp.C1-193-C1-194. 10.1051/jphyscol:1980158 . jpa-00219727

HAL Id: jpa-00219727
https://hal.archives-ouvertes.fr/jpa-00219727
Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
MÖSSBAUER AND MAGNETIC INVESTIGATIONS OF Y(Fe₆Al₆₋ₓ)₂

W. Steiner, R. Haferl and R. Grössinger

Institut für Angewandte Physik, Institut für Experimentalphysik, T.U. Wien.

Although both compounds YFe₂ and YAl₂ have the cubic MgCu₂ structure, for 0.5 < x < 0.65 the hexagonal MgZn₂ structure type was observed. Since tendencies for a preferential accommodation of Fe in compounds of the hexagonal structure type are obtained /1/, these samples have been omitted. ⁵⁷Fe MÖssbauer investigations on Y(Fe₆Al₆₋ₓ)₂ are only reported for the Fe-rich mixed crystals /2,3/. Therefore in connection with bulk magnetic measurements MÖssbauer measurements have been performed for 0.1 < x < 1 in the temperature range 5 to 300 K and partly in applied fields of 1.72 T.

The mean hyperfine field was evaluated by Murakawa et al /4/, whereas Besnus et al /2/ fitted the spectra by means of two different subspectra with large line-widths. A model which takes into account the influence of nearest (n) and next nearest (m) Fe neighbour configurations was used by van der Kraan et al /3/. A similar fitting procedure was applied for the present analysis. For a chosen x value the intensity ratios are calculated from a binomial distribution and kept unchanged throughout the fitting procedure.

On the Fe-rich side the 3d moments for different surroundings can be calculated using the measured hyperfine field values (fig.1) from

\[\mu_{3d}^{(n,m)} = \frac{1}{3d} [H_{hf}^{(n,m)} - A_s \mu_B] \]

\[(\lambda_{3d} = -12.5 T/\mu_B, A_s = 178 T/\mu_B, \mu_B = -0.02 \mu_B) \]

deduced from YFe₂. The first term represents the corepolarization, the second the Fermi contact interaction.

The mean 3d moments estimated by means of a binomial distribution \(P(n,m) \)

\[\bar{\mu}_3 = \sum_{n,m} P(n,m) \mu_{3d}^{(n,m)} + \bar{\mu}_S \]

are in good agreement with the mean moments determined from bulk magnetic measurements at 4.2 K.

Fig.1: Concentration dependence of the hyperfine field at 5 K. The numerous denote the number of nearest/next nearest Fe neighbours and specify the numbers of different surroundings, which are condensed to one subspectrum for the analyses. The broken lines connect the weighted mean values determined for a distinct number of nearest Fe neighbours.
and 6.5 T (fig.2). From these analyses a decreasing Fe moment with both decreasing number of nearest and next nearest Fe neighbours as well as increasing Al content must be concluded.

The temperatures T_A (determined by the vanishing of the magnetic hyperfine splitting) increase with increasing Fe content for $0.5 \leq x \leq 0.7$, although from bulk magnetic measurements no magnetic order was detected at temperatures $\geq 2K$. A large discrepancy between T_A and T_C (determined from $\sigma^2 (H/d)$ diagrams) was obtained for $x=0.8$ (fig.2). However above T_A a line-broadening was observed up to approximately 90K. For the same Fe concentration no change of the shape of the spectrum measured in an applied field of 5.0 T at 4.2 K was reported /3/. Further experiments are necessary to explain this complicated dependence of the magnetic hyperfine interaction on the temperature below T_C.

A complex magnetic order must be concluded for $x=0.7$. From bulk magnetic measurements no magnetic order was detected /2,5/. For the magnetization measured in low dc-fields after cooling to 4.2 K without any field a maximum is obtained at 30 K, which is comparable with $T_A=37 K$. Furthermore irreversible magnetization processes, magnetic history effects, displaced hysteresis loops after cooling in a magnetic field and a time dependence of the remanence were measured. Neutron depolarization measurements down to 30 mK confirm the absence of any spontaneous long-range magnetic order but point to a field induced short-range order /6/. The shape of the Mössbauer spectra measured at 5 K does not change for fields of 1.72 T and only minor changes occur for spectra recorded after cooling in the applied field. These facts point to a spin glass and/or micromagnetic like behaviour.

For $x \leq 0.4$ only quadrupole split spectra were recorded at 5K. The overall shape agrees with the shape of the spectra obtained at room temperature. In an applied field of 1.72 T an effective hyperfine field of 1.24 T was determined taking into account comparable magnetic and quadrupole interactions for $x=0.3$ at 5K, which clearly reflects the existence of an Fe moment even on the Al-rich side.