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Résumé.- On examine différents aspects du mouvement d'une bulle qui oscille, en commencant par la
formulation générale du probléme et sa solution dans le cas d'une oscillation linéaire sphérique.
On reprend alors ce probléme au moyen d'une méthode variationnelle. On passe ensuite aux oscilla-
tions (spériques) sous-harmoniques et non-linéaires puis aux oscillations non-sphériques et @ une
discussion de 1'équation (non-Tingaire) de Mathieu. Ensuite, la méthode variationnelle est utili-
sée pour étudier le couplage par interaction non-linéaire entre les oscillations sphériques sousr
harmoniques et Tes oscillations non-sphériques. Enfin, on évoque le réle éventuel du couplage non-

lTinéaire dans les études expérimentales.

Abstract.- Various aspects of an oscillating bubble are presented. The general formulation and the
linear spherical oscillation are discussed first followed by a corresponding variational treatment.
Nonlinear subharmonic spherical oscillations and nonspherical oscillation are presented next. The
study of nonspherical oscillation leads to a discussion on nonlinear Mathieu equation. Finally, the
variational method is employed for the study of the coupling between subharmonic spherical oscilla-
tion and nonspherical oscillation through nonlinear interaction. Experimental implication of the

nonlinear coupling is briefly discussed.

1. INTRODUCTION.- A bubble in a liquid is a fasci-
nating classical oscillator, all the more because
it is an ordinary, visually observable physical
object. It can execute simple harmonic, small am-
plitude, spherical oscillations with well~defined
resonance. It has damping mechanisms due to visco-
sity and thermal processes. It is a nonlinear os-
cillator. Thus, among other things, subharmonic
spherical oscillation can be generated under ex-
ternal oscillating pressure. /1,2,3,4/ Although
the surface tension tends to keep a small bubble
spherical, the spherical shape of bubble can of-
ten be distorted and induced by the spherical os-
cillation /5,6/. Indeed, the possible generation
of nonspherical oscillation reveals clearly that
the bubble system is a three dimensional nonli-
near oscillator. Furthermore the bubble can split,
and for vapor bubbles they can collapse or be
created.

The purpose of this work is to explore one
aspect of the oscillating bubble, i.e., the non-
linear interaction between the subharmonic sphe-
rical and nonspherical oscillations. In order to
clarify the problems involved, a brief review on
the general formulation, the subharmonic spheri-
cal oscillation and the 11neér theory of nonsphe-
rical oscillation will first be given. To facili-
late the analysis of the complex problem, varia-
tional method of approximation is to be employed.
Hence a variational formulation of the general

problem will be presented. For the purpose of sim-
plifying analysis, the dissipation processes are
neglected at this stage.

The linear theory of nonspherical oscilla-
tion was shown to lead to Mathieu equations /6/.
A study on nonlinear Mathieu equation /7/ will
thus be given to enhance our understanding of the
problem. Finally, the nonlinear coupling between
the subharmonic spherical and nonspherical oscil-
lation will be analyzed using the variational me-
thod.

2. GENERAL FORMULATION FOR A BUBBLE IN OSCILLATION.
Let us consider a gas bubble in an inviscid, and
incompressible Tiquid. Let us adopt the spherical
coordinate system (r,6,Z) and let the bubble sur-
face be defined as

r=R (8,E,1) . (1)

Then, the dynamical probiem can be formulated as
follows /8/ :

v2¢ = 0, for r>R , (2)
PL(t)
Pz Pegt- —— . for r>R,(3)

where ¢ is the velocity potential, p is the pres-
sure, and p is the density of the 1iquid. p_ (t)
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applied pressure at infinity.

(3) are the continuity equation
equation respectively. The kine-
boundary conditions on the bub-

+ (%% g%~ R%sin%9)
=R, (4)
p; on r= R, (5)

where o is the surface tension coefficient, and

Ra and RB are the
ture at the point
face. Py is the in
assumed to be gove

tion :

v
Pi =P ()T

two principal radii of curva-
of concern on the bubble sur-
ternal pressure which will be

rned by the polytrophic rela-

(6}

Py = pm(t) - pa .

Vhen Pys R',¢0, B and a, are small, and only 1i-
near terms of these quantities are retained in the
equations, then due to the orthogonality of the
spherical harmonics, the spherical harmonic modes
are all decoupled, and we obtain

where Pe and Ve are the internal pressure and vo-
Tume of the bubble at equilibrium and Vi is the
present volume of the bubble.

Equation (2)
spherical harmonic
p it} =

o + X
r n=1

When R is a single
we can also expres
harmonics :

oo

R=R_(t)+ I
0 n=1

can be solved in terms of the
S Yn (0,€), and we obtain :

()
;ﬁ;T- Yn (8,8) . (7}

-valued function of ¢ and &,
s R in terms of the spherical

a (1) ¥, (8,8) . (8)

It is readily seen thaf the equilibrium so-
Tution is given by :

¢=09R=Re5 P.i
Let us denote
R' = Ro(t) -R

e

and

- = p ~29 =
= Per ANd P, = Py Re ~ Pa -

dR' %o _
a‘r - ;2‘ =0 » (9)
e
d¢ p
L o, r -2, (10)
Re dt pRe
da
Fot e =0, n=1,2,..., (11)
R
e
dB
1
Eﬁ-“f_dt_n - % (n-1) (n+2) a_= 0,
e
n=12,..., (12)
where
3vp
2 e 20
wo = (1 ) (13)
° pRg 3YpeRe
Or
25, p4(t)
d°R 2 1
—— b= - s (14)
dt 0 pRe
and
d2an .
_(;2_ + (n‘l)(n+1)(n+2) —pR—g an =0. (15)
e

If we relax the restriction on the amplitude
of the spherical mode yet maintain that the nons-
pherical amplitudes be small, then the varioux
spherical harmonic modes are still decoupled, and
we obtain :

2
d"R dR R, 3y
0,3 0,2 _|1 ey’ _ 20 _
Ro el (T —[5 Pe (p—o) R, P= (t)],

(16)
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+ [(n-l)(n+1)(n+2) 2 -
R

3 2
pR0 [¢] dt

(17)

These equations are essentially those first deri-
ved by Plesset. /5/

3., VARIATIONAL FORMULATION.- The previous formula-
tion can be shown to be equivalent to the varia-
tional principle /9/ : the flow field of the sys-
tem and the motion of bubble surface are such that
an extremum is attained by the fuctional

1=f294dt, (18)
Y

where
VY
_Te'e 1-y
Jd = T:_§'( Vi dv)

fv { p[—g% +%- (V¢>)2] +p_}dv
0
- 5/ dA , (19)
A

Vi is the volume inside the bubble ; V0 is the vo-
Tume outside the bubble ; and A is the bubble sur-
face area.

It may be readily shown that if we make a
direct substitution of the bubble surface r = R
and the velocity potential ¢ in terms of (7) and
(8) in I, and then vary with respect to ¢y Ro,
Bn’ and as the equations obtained after lineari-
zation are exactly the same as those given in (16)

+

and (17). /10/ The nonlinear equations are again
coupled and extremely complicated. However, the
variational formulation can offer a straightfor-
ward approximate scheme by simply taking only a
finite term in the expansions (7) and (8). If
these cut-off schemes could be in any way justi-
fied, then the amplitude of the nonspherical modes
need not be restricted to be small. Therefore the

2
dR

(n-1) 0 -
__*_.an..O'
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variational formulation offers not only another
perspective of the problem but also a possible ap-
proximate scheme for various theoretical explora-
tions.

4. SUBHARMONIC SPHERICAL OSCILLATIONS.- The dyna-
mics of a spherical bubble is governed by the equa-
tion (16). For small amplitude motion near equili-
brium, the governing equation reduces to (14). Let
us take

Py (t) = p sin 20t . (20)
Then the solution of (14) is given by

cos w t + P Sin 2ut
0 2 2
pRe(wo‘% ) >
(21)
where the first two terms represent the free oscil-
lations with the natural frequency W, -

R' = Cl sin wot + C2

When the dissipation processes are included
in the problem, the free oscillation terms will die
out for large t, and only the last term, the exci-
ted term, will persist. The excited osciilation,
according to this linear theory, will oscillate
with the excitation frequency (2w).

Now if the excitation amplitude p is not
small, we should go back to the equation (16) for
correction to the linear theory. It is easy to see
higher harmonic oscillations with multiples of the
excitation frequency will be cenerated due to the
nonlinear interactions. It is Tess obvious that
oscillations with fractions of the excitation fre-
quency would also be generated. These are called
subharmonic oscillations. Theoretical studies on
the subharmonic oscillations of bubbles have been
carried out using the method of parametric reaso-
nance /1/, the averaging method of Bogolyubov-
Krylov /3/, as well as the variational method /4/.
Some of the significant findings are :

i) When the dissipation process is included, the
subharmonic oscillation can be generated only
when the excitation amplitude exceeds certain
threshold magnitude to overcome the damping.

ii) The subharmonic oscillations can be excited
only in a definite frequency interval. The
larger is the excitation amplitude, the wider
would be the freguency interval. For the most
important subharmonic oscillation with oscil-
lation frequency w, i.e., half the excitation
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frequency, the permissible frequency interval
is in the neighborhood of w = Wys i.e. the
excitation frequency is around twice the natu-
ral frequency.
When the dissipation process is not included in
the formulation, there is no threshold for the
excitation amplitude, but there is again a permis-
sible excitable frequency range. These qualitative
and approximate behavior can be most simply demons-
trated by the variational method. /4/

5. SMALL AMPLITUDE NONSPHERICAL OSCILLATIONS.-
When the amplitudes of the nonspherical modes are
small, the equations of motion are given by (16)
and (17). Let us introduce bn by

R
_ Ro.3/2
bn - (TT_) 4 -

then the equation (17) becomes

d%_
—z—dt + Bnbn =0 s (22)
where
1, 2
s oo 2 M) Ry 3 (dRo)Z (23)
n= “n 2 ToZ\dt/
R dt R
o] ¢}
2. (n+1)(n+2) 2 24
oh = (D)) (ne2) 5. (28)
o}
0

If the excited spherical mode is oscillating
according to the linear theory, then we can write

R0 = Re (1 + 8 sin 2wt) .

Thus, we have
I 2
B, = [wn +0 (8 )]

+ {[% (n+%)w2-3w§]6 +0(82)} sin 2wt . (25)

If we ignore 0 (62) terms, then equation
(22), which is a Hil1l's equation, becomes a Ma-
thieu equation. /16/ Thus when & is large enough,
the amplitude of some of the nonspherical modes
will grow according to the stability theory of the
Mathieu equation /11/. The critical value is given
by /12/
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(w?-ul) = 26[(n+%)w2 - %wﬁ] ) (26)

It is significant that at the critical value
the frequency of oscillation of the nonspherical
mode is w, i.e. half the excited frequency. There-
fore, it is also a subharmonic oscillation. There
is also a Timited range of permissible frequency
interval, which is related now to W, rather than
the natural freguency W It is likewise worth no-
ting that the parametric resonance approach to the
study of spherical subharmonic oscillations also
leads to a type of Hill's equation.

6. NONLINEAR MATHIEU EQUATION.- When the nonsphefﬁ-
cal mode, according to the equation (22), is unsta-
ble, what can we say about the final state of the
motion ? One possible outcome is that an asympto-
tic state of steady finite amplitude oscillation
will be reached due to the nonlinear interactions
so far negiected. A study of a model nonlinear
Mathieu equation could shed lights on this ques-
tion,

A nonlinear Mathieu equation of the follo-
wing type :

2

Q_% + (o + B cos 2t)x + rx3 =0, (27)

dt

has been chosen for the study, and the variational
method has been employed for the analysis /7/.
When the constant parameter r = 0, equation (27)
is the ordinary linear Mathieu equation.

We may recall that for the linear Mathieu
equation, the (o,8)-plane is divided into stable
and unstable regions by the so-called characteris-
tic curves. In the stable reaion, the two linearly
independent solutions both tend to zero asymptoti-
cally, whereas in the unstable region, both solu-
tions tend to grow indefinitely. Only on the cha-
racteristic curves, a solution periodic in time
can exist, which is called a Mathieu function. The
other linearly independent solution on the charac-
teristic curve is unstable /11/. Therefore, except
for the exceptional values of {a,8) on the charac-
teristic curves, asymptotic periodic solutions are
generally not to be expected to exist for Tinear
Mathieu equations.

For nonlinear Mathieu equation, however, it
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may be shown by the variational method /7/, that
asymptotic periodic solution of finite amplitude
can exist for a finite region in the (a,B)-plane,
where the Tinear Mathieu system is unstable. The
possible existence of such asymptotic periodic so-
Tution suggests that the linearly unstable non-
spherical modes of oscillation of bubble may also

settle down to finite amplitude steady oscillation

7. THE COUPLING OF SUBHARMONIC SPHERICAL AND NON-
SPHERICAL OSCILLATIONS.- As we have described in
section 1V, when the excitation amplitude is large
enough, subharmonic spherical oscillations are to
be generated. The most easily excited mode is the
subharmonic oscillation with frequency half the
excitation frequency. At the same time, as descri-
bed in section V, nonspherical oscillations with
half the excitation frequency are also induced by
the external spherical excitation. It is conceiva-
ble that these finite ampiitude oscillations will
interact with each other.

We do not attempt to solve this extremely
difficult problem in its general form. We shall
try to establish qualitatively and approximately
that finite amplitude asymptotic subharmonic sphe-
rical and nonspherical oscillations can both be
generated by the externally applied spherical ex-
citation. Variational method of analysis is to be
employed, since this method is most straightfor-
ward to apply and simplest to single out the rele-
vant modes of oscillation.

In its simplest form, we shall look for so-
lutions such that

P = Py + P sin 2wt , (28)

R = Ri + R1 sin 2wt + R2 cos wt

+

a cos wt Yn (8,9) » (29)

¢ = - % (wl cos 2wt + 12 sin wt)

B
rn+1

sin wt Yn (0,0) {30)

where p, Rl’ R2, a Ups Yo and B are all taken to
be constants. These are the asymptotic trial solu-
tions to be substituted into the expression (18)
to be varied. They are certainly not the most ge-
neral form of the solutions. Guided by our expe-
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rience with the subharmonic spherical oscillations
and the Mathieu equations, they are the simplest
relevant solutions to be expected. The relation
(26) is to be used to determine the value n, since
this mode js expected to be most unstable accor-
ding to the Tinear theory.

Even though (29) and (30) are the simplest
form of trial solutions which encompass the cou-
pling between subharmonic spherical and nonspheri-
cal modes, the results are already quite involved.
The averaged functional computed up to 0(54) is
given elswhere /15/.

For small amplitude motions, the linear equa-
tions are readily found to be :

I
(20)° - wl|R) = o (31)
(2 2], _
w Wy R2 =0, (32)
- -
and
o - wlla=o0. (33)

If we carry to next order, without going in-
to detajl, the equations take the following form :

2 2 _p
sz) - wo]Rl = 5, + R;Cy (32)
2 2 _ 3
[» - wo]Rz = R2C2 +ca” , (33)
and
2 2
o7 - s - gy (34)

where Cl’ Cz and C3 are quadratic in Rl’ Rz.and a,
and ¢ is some constant coefficient. Therefore we
can see qualitatively that the subharmonic spheri-
cal oscillation is generated when the excitation
frequency 2w is about twice the value of Wy while
the nonspherical oscillation is generated when the
excitation frequency is about twice the value of
wp- However, as seen from (33), the nonspherical
oscillation will induce the subharmonic spherical
oscillation through the nonlinear interaction. To
this order of calculation the coupling is essen-
tially unidirectional. The excitation of finite
amplitude nonspherical oscillation would Tead to
the subharmonic spherical oscillation but not ne-
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cessarily vice versa.

8. DISCUSSION.- The problem of nonlinear coupling
between spherical and nonspherical oscillation is
extremely complex. In order to obtain some concre-
te understanding of the problem we have made some
drastically simplifying assumptions. The dissipa-
tion processes are neglected, and we are thus una-
ble to calculate the threshold amplitude for these
nonlinear oscillations. We have singled out and
chosen some particular modes of oscillation. Al-
though the choices are plausible from physical
reasoning and variational argument, quantitative
accuracy is expected to suffer. However despite
these defects and incompleteness, a qualitative
demonstration of the coupling of the subharmonic
spherical and nonspherical oscillations through
nonlinear interaction was established, and a fra-
mework for more accurate quantitative calculation
was set up for this complex problem.

From the complexity of analyéis even for our
simplified approach, it seems to be not very pro-
ductive to attempt for more refined theoretical
study at this stage before some experimental study
is made to establish the basic validity of the non-
1inear coupling between subharmonic spherical and
nonspherical oscillations. One important implica-
tion of the coupling is worth discussing. As we
have mentioned before, the subharmonic spherical
oscillation will oscillate in the neighborhood of
the natural frequency Wy when the excitation fre-
quency 2w is about 2wo. On the other hand, the
most critical situation for the nonspherical mode

~

to be excited is for 2w W

when Wy is half the excitation frequenz§, wile the
normal resonance is approached to yield the lar-
gest value of Rl‘ Thus through the nonlinear cou-
pling, subharmonic spherical oscillation can be
generated to oscillate in the neighborhood of

wo/Z.

and w, Y , i.e.,
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