IONIZATION AVERAGE FREQUENCY IN ANODE SHEATH OF PENNING-TYPE HIGH-VOLTAGE DISCHARGE

N. Kervalishvili, V. Kortkhonjia

To cite this version:
N. Kervalishvili, V. Kortkhonjia. IONIZATION AVERAGE FREQUENCY IN ANODE SHEATH OF PENNING-TYPE HIGH-VOLTAGE DISCHARGE. Journal de Physique Colloques, 1979, 40 (C7), pp.C7-111-C7-112. <10.1051/jphyscol:1979755>. <jpa-00219461>

HAL Id: jpa-00219461
https://hal.archives-ouvertes.fr/jpa-00219461

Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
IONSATION AVERAGE FREQUENCY IN ANODE SHEATH OF PENNING-TYPE HIGH-VOLTAGE DISCHARGE

N.A. Kervalishvili, V.P. Kortkhonjia.
Institute of Physics, Academy of Sciences of the Georgian SSR, Tbilissi, U.S.S.R.

Theoretical and experimental investigations of physical processes and anode sheath structure in high voltage discharge in crossed \(E\times B\) fields often require knowledge of ionization frequency dependence on anode sheath parameters. Recently, there is a lack of such data. The aim of this work was to measure the dependence of ionization average frequency on electric field strength in anode sheath.

In the "vacuum regime" in anode sheath a condition \(n_i \ll n_e\) is fulfilled. The total ion current when the anode sheath thickness \(d < \tau_a\) is determined by the expression

\[
J_i = 2\pi e \alpha_a \int \tau_a n_i d \tau = \frac{\rho_{\alpha a}}{2} \frac{\nu_a}{E_a}
\]

Hence, ionization average frequency

\[
\nu_a = \frac{\int \tau_a E_a}{\rho_{\alpha a} E_a} = \frac{2 J_i}{\rho_{\alpha a} E_a}
\]

Electric field strength at the anode can be determined by frequency of rotational oscillations \(\nu_0\)

\[
E_a = \frac{2\pi}{c} \tau_a H \nu_0
\]

where \(H\) is an external magnetic field strength.

As it is shown in [1], a fundamental mode of rotational oscillations always exists in magnetron geometry and in Penning cell in anode sheath at the anode surface.

On Fig. 1 \(\nu_a\) versus discharge voltage and magnetic field dependence in magnetron geometry \((\tau_a = 3.2 \text{ cm}, \ L_a = 7 \text{ cm}, \ r_a = 0.75 \text{ cm}, \ p = 2.10^{-4} \text{ Torr})\), the working gas is \(Ar\). The conditions of anode adjustment [2] are maintained. The measurement scheme is given in [1].

Ion current \(J_i\) is about 1.5 times greater than discharge current \([2]\) and has been measured directly during the experiment.

\(\nu_i\) versus \(\nu_a\) is shown on the Fig. 2. As it is seen, \(\nu_i\) changes approximately as square root of discharge voltage. Since values \(\nu_i\) for different \(H\) and \(\nu_a\) are plotted on the figure, it is possible to assume, that \(\nu_i\) is proportional to the square root of potential in anode sheath.

Fig. 3 illustrates \(\nu_i\) versus \(\frac{E_a}{H}\) dependence. For high magnetic fields, when \(d < \tau_a\)

\[
\nu_i \approx \frac{\int \frac{E_a}{H}(E) \ dE}{E_a}
\]

It is always possible to select such dependence \(\nu_i = f(E)\), at which \(\nu_i\) calculated by (3), coincides with a measured one. E.G. in [3] an expression...
has been used for electron energy.

If we assume, that $T_e << W_e$, then

\[W_e \approx \frac{m_e^2}{e} \frac{E_e^2}{H^2} \]

and we'll get

\[\gamma_i = \gamma_{im} \frac{2 \sqrt{\frac{W_e}{W_{eo}}} \frac{E_e^2}{W_{eo}}}{1 + \frac{E_e^2}{W_{eo}}} \]

(4)

Here $E_o = \sqrt{\frac{2W_{eo}}{m_e}} H$

Substituting (4) into (3), we'll find

\[\frac{\bar{\gamma}_i}{\gamma_{im}} = \frac{E_e}{E_o} \ln \left(1 + \frac{E_e^2}{W_{eo}} \right) \]

This dependence for $\gamma_{im} = 1.5 \times 10^{-7} \text{m}^{-1}$ and

$W_{eo} = 300 \text{ eV}$ is plotted on the Fig. 3 with solid line and it coincides satisfactorily with the experimental results.

Fig. 1

\[\gamma_i = \gamma_{im} \frac{2 \sqrt{\frac{W_e}{W_{eo}}} \frac{E_e^2}{W_{eo}}}{1 + \frac{E_e^2}{W_{eo}}} \]

Fig. 3

References

1. B.A. Kervalishvili, V.P. Kortkhonjia, XII ICPIG, part I, Lindhoven, the Netherlands, August 18-22, 1975, p. 112.