DIELECTRIC RESPONSE AND ENERGY LOSS FOR
AN INTERMEDIATE QUANTUM PLASMA
N. Frankel, K. Hines, R. Speirs

To cite this version:
N. Frankel, K. Hines, R. Speirs. DIELECTRIC RESPONSE AND ENERGY LOSS FOR
AN INTERMEDIATE QUANTUM PLASMA. Journal de Physique Colloques, 1979, 40 (C7),
pp.C7-513-C7-514. <10.1051/jphyscol:19797248>. <jpa-00219232>

HAL Id: jpa-00219232
https://hal.archives-ouvertes.fr/jpa-00219232
Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
DIELECTRIC RESPONSE AND ENERGY LOSS FOR AN INTERMEDIATE QUANTUM PLASMA

University of Melbourne, School of Physics, Parkville, 3052 Melbourne, Australia.

1. INTRODUCTION: With the advent of the use of laser-driven pellets to obtain thermonuclear fusion, we have in the laboratory a plasma in which the electrons have a fugacity, \(Z = 1 \), the intermediate quantum regime. When a highly compressed deuterium plasma is obtained by laser compression, the final state of the system corresponds to particle number densities of \(\rho \approx 10^{26} - 10^{27} \) and temperatures \(T \approx 10^7 - 10^8 \) /K.

It is perhaps interesting to note that the ions in the deep interior of Jupiter correspondingly reach a fugacity regime around unity /3/. Using the above data, we find that the Fermi temperature, \(T_F \), is virtually equal to the system's temperature, \(T \). The temperature at which the fugacity of an electron gas reaches unity is \(T_0 = 0.93 T_F /4 \). Thus these laser-driven fusion conditions correspond to a plasma of intermediate (partially degenerate) electrons and classical ions. What is more, the plasma parameter

\[
\gamma = 4^{2/3} (4/3 \pi \rho)^{1/3} / m \varepsilon_0 \nu
\]

is, for the above values, such that

\[
10^{-2} \lesssim \gamma \lesssim 1.5
\]

Thus the particles to a first approximation are weakly coupled and also to a first approximation we can treat them using standard linear response theory.

Hore and Frankel /4/ have shown that all quantities which are thermodynamically averaged over the Fermi-Dirac distribution function can readily be expanded about the intermediate quantum region, \(Z = 1 \), using standard Mellin integral transform techniques. Hore and Frankel /5/ have also studied the dielectric response of the charged Bose gas about the condensation region, \(Z = 1 \). In this paper we report on similar calculations using the techniques of reference /5/ along with the expansions appropriate for a gas of fermions about \(Z = 1 \) given in reference /4/.

Work up to now on this region of compelling interest in fusion research has essentially only been accessible by numerical techniques /6/, /7/.

2. RESULTS: We give here a brief summary of results obtained by the above analytical techniques for: (a) the longitudinal dielectric response function, (b) plasma dispersion relationships, (c) the ion-acoustic sound, (d) the energy loss to collective modes, (e) the energy loss to binary collisions and (f) the electron-ion contribution to the thermal conductivity.

(a): Given the standard longitudinal dielectric response function \(\varepsilon(q, \omega) \) from linear RPA theory for an electron gas,

\[
\varepsilon(q, \omega) = 1 + \frac{\omega^2}{\omega^2 - \omega_0^2 - i \gamma (\omega_0 / \varepsilon_0) \nu / \rho} + O(\rho^0)
\]

where \(\lambda \) is the spin, \(\Omega \) the volume of the system and \(P_0(q) \) the Fermi distribution function

\[
F_0(q) = \frac{1}{\Omega} \left[Z^{-1} e^{\gamma} \pi M \sqrt{1 + 1} \right]
\]

where

\[
\gamma = \frac{q^2}{4} \left(\frac{4}{3} \pi \rho \right)^{1/3} / m \varepsilon_0 \nu
\]

and

\[
\omega_0^2 = \omega_0^2 + \frac{3 \gamma^2}{\pi \rho} \left(\frac{\omega_0}{\gamma} \right) \left(\frac{\omega_0}{\gamma} - 5 \right) + \frac{20}{9} \left(\frac{\omega_0}{\gamma} \right) \left(\frac{\omega_0}{\gamma} - 4 \right) + \cdots + O(\rho^0)
\]

(b): From the analytical result given in (a) we have obtained the following dispersion relationship for electron oscillations in the small \(q \) region:

\[
\omega(q) = \omega(q) + i \gamma (q)
\]

where

\[
\omega(q) = \omega_0^2 + \frac{3 \gamma^2}{\pi \rho} \left(\frac{\omega_0}{\gamma} \right) \left(\frac{\omega_0}{\gamma} - 5 \right) + \frac{20}{9} \left(\frac{\omega_0}{\gamma} \right) \left(\frac{\omega_0}{\gamma} - 4 \right) + \cdots + O(\rho^0)
\]

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19797248
Y = -\omega_1'(\theta) \left(\frac{\omega_1(z)}{\omega_1(z)} \right) \exp(-\omega_1(z)) x \\
\times \left[-\frac{x^2}{3} + \frac{\beta}{3} + \ldots \right] + O(\beta) \\
\chi[1.9944 - 1.0711 \beta - 1.3838 \beta^2 + O(\beta^3)] \\
\text{where all quantities are as in reference /12/.}

3. DISCUSSION: Detailed comparison will be given of the binary collision and collective energy loss rates in the final state of a laser-driven fusion electron-ion plasma. We will also make specific comparisons for the quantities presented in (a) and (f) above with their corresponding form in the cases Z = 0 (classical) and Z = \infty (totally degenerate).

REFERENCES:

10/ FRANKEL, N.E., Plasma Phys. 7 (1965) 225.