The specific heat of TbPd3 and ErPd3 at low temperatures
J.M. Machado da Silva

To cite this version:
J.M. Machado da Silva. The specific heat of TbPd3 and ErPd3 at low temperatures. Journal de Physique Colloques, 1979, 40 (C5), pp.C5-152-C5-153. <10.1051/jphyscol:1979557>. <jpa-00218974>

HAL Id: jpa-00218974
https://hal.archives-ouvertes.fr/jpa-00218974
Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The specific heat of TbPd₃ and ErPd₃ at low temperatures

J. M. Machado da Silva (*)
Clarendon Laboratory, Oxford, England

Résumé. — Nous avons mesuré les chaleurs spécifiques de TbPd₃ et de ErPd₃ de 2.1 à 8.6 K et de 0.2 à 0.9 K respectivement. La chaleur spécifique de TbPd₃ présente un pic au voisinage de la température 3.75 K. La chaleur spécifique du ErPd₃ ressemble à une anomalie de Schottky avec un maximum $C_v/R \sim 0.74$ qui apparaît aux environs de la température 0.75 K.

Abstract. — The specific heats of TbPd₃ and ErPd₃ have been measured from 2.1 to 8.6 K and from 0.2 to 0.9 K respectively. The specific heat of TbPd₃ shows a magnetic ordering with a typical λ shape at 3.75 K. The specific heat of ErPd₃ resembles a Schottky anomaly with a maximum at about 0.75 K with $C_v/R \sim 0.74$.

In the REM₃ phases the strength of the exchange interaction, as shown by the transition temperatures, varies widely. The magnitude of the crystal field shows also substantial variations due to the different charge on the M ion. The symmetry of the crystal field is cubic and its effect can therefore be calculated from the results of Lea et al. [1]. We attempt here to calculate the energy levels of the low lying states for the TbPd₃ and ErPd₃ compounds.

The calorimeter where the experiments were performed, as well as the method of measurement, have been described elsewhere [2].

The samples used in the measurements were prepared by I. R. Harris [3] by arc melting stoichiometric quantities of the pure metals in an argon atmosphere.

The heat capacity of TbPd₃ (figure 1) clearly shows a magnetic transition with a typical λ shape at 3.75 K. The heat capacity up to 8.6 K is always larger than that of LaPd₃ [4] (figure 1), revealing that above 3.75 K there is a contribution from the exchange interaction and from the crystal field. We expect that above 5 K the contribution to the heat capacity due to the exchange interaction is negligible and that the extra heat capacity above the heat capacity of LaPd₃ must be explained in terms of the crystal field splittings.

A point charge model calculation with $Z_{tb} = 3$, $Z_{pd} = 0$ predicts that a non-magnetic doublet (Γ_3) will be the ground state with a triplet ($\Gamma_5^{(3)}$) at 2.2 K, and a singlet (Γ_2) at 9 K. The other excited states, having much higher energy, need not be considered in the temperature range of this measurement. In the absence of an exchange interaction a Schottky anomaly would occur, and considering simply the two lowest states, $C_v(R)_{\text{max}}$ will be ~ 0.61 and $T_{\text{max}} \sim 0.87$ K. Comparing these values with the results above 5 K, we conclude that the point charge model predictions must be rejected. A fitting of the Schottky type above 5 K is very sensitive to the two low lying states and we can only achieve a good fit if Γ_3 is the ground state and the energy of $\Gamma_5^{(3)}$ is 8 ± 0.5 K. Some uncertainty about the energy of Γ_2 remains because the lattice heat capacity is not accurately known. If we assume that the lattice heat capacity of TbPd₃ is the same as that of LaPd₃, the energy of Γ_2 will be 60 ± 10 K: however a value of 33 ± 5 K for Γ_2 will give a good fit provided a lattice heat capacity similar to that of PrPd₃ [4] is adopted. The inelastic neutron scattering results on TbPd₃ [5] exhibit a transition peak at ~ 6 meV. This might well suggest that the energy of Γ_2 is indeed ~ 60 K as predicted above.

The magnetic ordering of TbPd₃ raises the question whether the exchange energy is sufficient to cause the...
states Γ_3 and $\Gamma_5^{(1)}$ to cross or it merely induces a moment in the Γ_5 state through its second order term. The crystal field energies suggest that the second possibility is the likely answer.

Calculations of the energies of the levels Γ_3 and $\Gamma_5^{(1)}$, within a molecular field model, show that for the direction $\langle 100 \rangle$ no magnetic field will make these levels cross, and that Γ_3 magnetises in second order due to the mixing in the $\langle 100 \rangle$ direction. In the $\langle 111 \rangle$ direction the Γ_3 state remains degenerate to second order and again the exchange field cannot cause Γ_3 and $\Gamma_5^{(1)}$ to cross; thus we deduce [6] that ordering will occur in the $\langle 100 \rangle$ direction from the Γ_3 state.

The specific heat of ErPd$_3$ from 0.2 to 0.9 K (figure 2) resembles a Schottky anomaly with a maximum $C_v/R \sim 0.74$ at about $T_{\text{max}} = 0.75$ K, revealing that magnetic ordering does not occur in ErPd$_3$ above 0.2 K. We can therefore use the point charge model to interpret the experimental results. If we take $Z_{\alpha} = 3$, $Z_{\text{pd}} = 0$, the point charge model predicts that a magnetic doublet Γ_6 will be the ground state with the four-fold degenerate level $\Gamma_8^{(3)}$ at 0.9 K and the doublet Γ_7 at 17 K. The two four-fold degenerate levels $\Gamma_8^{(2)}$ and $\Gamma_6^{(1)}$ have energies still higher than Γ_7. It can be seen from the energy level diagram [1] that $\Gamma_8^{(3)}$ and Γ_6 cross at $x \sim 0.85$, where x is one of the parameters of the crystal field.

We compare the observed data with the predictions for a two level system, with $g_1/g_0 = 2$, where g_1 and g_0 are the degeneracies of $\Gamma_8^{(3)}$ and Γ_6 respectively. We obtain $(C_v/R)_{\text{max}} = 0.74$, which agrees reasonably well with the experiments. This indicates that Γ_6 is the ground state, since if $\Gamma_8^{(3)}$ and Γ_6 had crossed, g_1/g_0 would be 0.5 and $(C_v/R)_{\text{max}}$ would become 0.24, which would have been too small. On the other hand from $T_{\text{max}} = 0.75$ K we can derive a value of 2.0 K for the energy of the $\Gamma_8^{(3)}$ state.

The agreement between the experimental and theoretical values (figure 2) is reasonable above 0.35 K, especially as the experimental points show a lot of scatter above 0.7 K. Below 0.35 K there is a significant deviation from the theoretical curve. This additional contribution to the heat capacity could well be associated with the short range interactions present above a magnetic ordering temperature.

Values of $x \sim -0.8$ and of the second crystal field parameter $W \sim 0.65$ K and of $x \sim 0.9$ and $W \sim 0.12$ K for ErPd$_3$, would be compatible with our experimental results. In both TbPd$_3$ and ErPd$_3$, the reduced fourth-order crystal field parameter $B_4 \alpha^3 \langle r^4 \rangle / \beta$ [5] is -0.30 ± 0.05 μeV.cm. Here α is the lattice constant [3], $B_4 = W / x$, β is a reduced matrix element [7] and $\langle r^4 \rangle$ is a relativistic radial function tabulated by Lewis [8]. The value of this parameter in TbPd$_3$ and ErPd$_3$ agree quite well with those in PrPd$_3$, NdPd$_3$ [5] and YbPd$_3$ [5, 9] suggesting, as pointed out by Furrer et al. [5], that the reduced fourth-order parameter (together with the less reliable reduced sixth-order parameter), can be used to estimate the crystal field splittings in the REPd$_3$ compounds.

We are grateful for the help of Drs. R. W. Hill, W. E. Gardner and J. R. Harris. This research was supported by a grant from the S.R.C.

References