Lattice dynamics of lanthanides
J. Upadhyaya

To cite this version:

J. Upadhyaya. Lattice dynamics of lanthanides. Journal de Physique Colloques, 1979, 40 (C5),
pp.C5-61-C5-62. <10.1051/jphyscol:1979524>. <jpa-00218941>

HAL Id: jpa-00218941
https://hal.archives-ouvertes.fr/jpa-00218941
Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Lattice dynamics of lanthanides

J. C. Upadhyaya

Department of Physics, Agra College, Agra-282002, India (*)

The lanthanide group of rare earth metals is characterized with the outer electronic configuration $4f^n 5d^m 6s^2$ ($n = 2, 3, \ldots, 14$; $m = 1, 2$) and covers the elements with atomic numbers from $Z = 58$ (Ce) to $Z = 71$ (Lu). In this group of metals, the ions are predominantly trivalent and the term values vary only slightly over the series. Recently Upadhyaya and Animalu [1] have developed a model potential of Heine-Abarenkov (HA) type to represent the electron-phonon interaction in rare earth metals.

Similar to the transition metal model potential (TMMP) method of Animalu [2] in which the s-d hybridization is incorporated through an $l = 2$ model potential well depth, the s-f hybridization in the energy bands of the lanthanides in the REMMP is characterized by an $l = 3$ model potential well depth of the resonant form $A_s(E) a^2 f W_f(E_f - E)$, where E_f is the position and W_f the width of the f-band resonance. The REMMP has been applied by Upadhyaya and Animalu [1] in the calculation of phonon dispersion in two lanthanides, namely Tb and Ho, by including the nonlocality in the Eschrig and Wonn scheme [3] and a reasonably good agreement is found between the computed and experimental results. In this scheme [3], the form factor is expanded in terms of E- and k, q-dependent terms in Taylor’s series and the expansion is truncated up to linear terms. The expressions for the coefficients of E- and k, q-dependent terms have been derived by Upadhyaya and Animalu [1], and Upadhyaya [4]. If the full scheme of Eschrig and Wonn [3] together with a relation of the coefficients of E- and k, q-dependent terms of reference [4] is applied in the calculation of phonon frequencies of Tb, it is observed that the phonon spectrum is raised in general by 10 to 15% and a similar fit to that of Upadhyaya and Animalu [1] is obtained for a bit lower value of the nonlocal parameter a_q. Next, it was thought that second order E-dependent terms in the expansion may contribute to the phonon frequencies. Importance of unpaired forces in the lattice dynamics of Tb and Ho has been also discussed.

Standard procedure has been adopted for the phonon frequency calculation of the hcp system. The Coulombic contribution to the dynamical matrix has been calculated as usual and the repulsive contribution has been assumed to be negligible, because (i) of the parametrized treatment of the nonlocality in the present work and (ii) the hard core repulsion may be cancelling in rare earth metals by the f-f attraction similar to d-d attraction in transition metals [5]. The band structure contribution to the dynamical matrix involves an expression for the energy wave number characteristic $G(q)$ whose expression is obtained by including the first and second order E-dependent terms and first order k, q-dependent term in the Taylor expansion of the model potential as following:

$$G(q) = G_0(q) \left[1 + a_q \frac{C(q)}{D(q)} + b_q \frac{E(q)}{D(q)} + c_q \frac{F(q)}{D(q)} \right]$$

where $G_0(q)$ is the energy wave number characteristic in the local approximation,

$$a_q = \frac{1}{V^{\text{loc}}(q)} \left(\frac{\hbar^2}{2m^*} \right) \frac{\partial^2 E}{\partial E} _{E_f}, \quad b_q = \frac{2k_f}{\sqrt{3}} a_q$$

(*) Present address: Department of Physics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
and
\[c_q = a_e^2 + \frac{1}{2} (h^2/2 m^*)^2 \cdot \frac{1}{V^{loc}(q)} \cdot \left(\frac{\partial^2 F}{\partial E^2} \right)_{E_F} \]

The expressions for \(C(q), D(q), E(q) \) and \(F(q) \) are the following:
\[C(q) = \frac{3}{2} \frac{Z}{k_F^2} \left(1 + \eta^2 - \frac{(1 - \eta^2)^2}{2 \eta} \ln \left| \frac{1 + \eta}{1 - \eta} \right| \right), \]
\[D(q) = \frac{3}{2} \frac{Z}{k_F^2} \left(1 + \frac{1 - \eta^2}{2 \eta} \ln \left| \frac{1 + \eta}{1 - \eta} \right| \right), \]
\[E(q) = \theta(n - 1) 4 k_F^2 \eta (1 - \eta) D(q), \]
and
\[F(q) = \frac{3}{2} \frac{Z}{k_F^2} \left(\eta - 1 \right)^2 - \frac{40}{3} \eta^2 - \eta^4 - \frac{(1 - \eta^2)^3}{2 \eta} \ln \left| \frac{1 + \eta}{1 - \eta} \right| \]

where \(\eta = q/2 k_F \) and \(\theta \) is the Heaviside function.

In the present treatment, we take \(a_q \), say \(a_e \), as an adjustable parameter because of the scarcity of the spectroscopic data, needed for their evaluation and compute the phonon dispersion in Tb along \(\Gamma A, \Gamma M \) and \(\Gamma K M \) symmetry directions with \(a = -1 \). The results of calculation are shown in figure 1 by the dot-dash curves (only along \(\Gamma A \) direction) with the experimental points of Nicklow et al. [6] by considering the first three terms of \(G(q) \) in eq. (1). The phonon spectrum is seen to be raised by about 10 to 15% when compared to the results of Upadhyaya and Animalu [1] which has been shown by dashed lines in figure 1. To obtain a better fit, we find that \(a = -0.85 \) gives the phonon frequencies of Tb of the same order as in reference [1] and present the dispersion curves by solid lines. It is to be seen that now the curves are indistinguishable to that of Upadhyaya and Animalu [1] along \(\Gamma A \) direction but the curves are improved along \(\Gamma M \) direction. Next, the calculations were also done by including 4th term of \(G(q) \) in eq. (1), but no effect was found on the phonon frequencies of Tb. Similar results are obtained for Ho. We expect the similar conclusions for other hcp lanthanides.

Spin-orbit coupling is also important for the lanthanides, having high atomic number. Upadhyaya and Animalu's calculations [1] show that the contribution due to this factor is not substantial as far as the question of phonons in lanthanides is concerned. Local field corrections seem also important in the rare earth metals. This can be done by following the method as discussed by Upadhyaya and Animalu [1].

It is to be mentioned that in the present calculations, only central paired interaction is involved and hence the ordering of dispersion branches along \(\Gamma K M \) direction and the desired degeneracy at the K-point in Tb and Ho cannot be explained [7]. This can be explained by accounting third order terms in the pseudopotential similar to Bertoni et al. [8]. The inclusion of local field effects gives rise to multi-ion forces and hence may explain the desired results of \(\Gamma K M \) direction. We have not done these complex first principles calculations because of the large computational effort and time involved in this work. However, we have developed a force constant approach which accounts for the three body forces in a simple way and explains the ordering of dispersion curves along \(\Gamma K M \) direction in Tb and Ho [9]. This procedure does not include for the electron gas compressibility and hence a force constant approach, consistent with the recent work of Upadhyaya [10] for the hcp system will be satisfactory.

The author is thankful to Prof. J. Friedel and Prof. R. M. Pick for discussions. Computer grant from the University Grants Commission, New Delhi is gratefully acknowledged.

References