Hydrogen storage properties and characteristics of rare earth compounds
C. Lundin

To cite this version:
C. Lundin. Hydrogen storage properties and characteristics of rare earth compounds. Journal de Physique Colloques, 1979, 40 (C5), pp.C5-286-C5-291. <10.1051/jphyscol:19795104>. <jpa-00218887>

HAL Id: jpa-00218887
https://hal.archives-ouvertes.fr/jpa-00218887
Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Hydrogen storage properties and characteristics of rare earth compounds

C. E. Lundin

Denver Research Institute, University of Denver, Denver, Colorado, U.S.A.

Abstract. — The characteristics of rare earth intermetallic compounds that absorb sufficient hydrogen to be of interest for energy storage purposes were surveyed, and the status of the materials technology and their application's potential reported. All of the properties pertinent to viable hydrogen energy storage are discussed. Hydrogen appears more and more to be an attractive alternative energy carrier with hydride storage as a key element in systems approaches. Some of the current and projected near-term applications are catalogued. Industrial participation is beginning to emerge and shows good potential for expansion. The rare earth compounds and alloys are playing an important role in this evolutionary process. The criteria of hydride formation are described, and the current knowledge of predictive approaches are outlined. The rare earths show promise in adjusting and modifying storage properties of intermetallic compounds that hydride. The interstitial hole size-stability correlation developed in our laboratories has demonstrated itself to be a very useful and important tool in this respect.

1. Introduction. — Hydrides of metals, inclusive of the alkali metals, the alkaline-earth metals, and the transition metals, have been known, investigated and used for industrial applications for scores of years in both commercial and government applications. Almost without exception, these metal hydrides were characterized by their highly stable condition. The uses of these hydrides ranged from reducing agents, generation of hydrogen with water, drying agents, deoxidation and desulfurization of molten ferrous metals, and high energy fuels. The most notable application was that for nuclear purposes.

More recently another class of hydrides emerged from studies during the latter 1960's at the Brookhaven National Laboratory [1, 2, 3] and at Philips [4, 5] in Eindhoven, The Netherlands. These hydrides have been termed less-stable hydrides, or unstable hydrides. They absorb and desorb hydrogen reversibly with rapid kinetics at ambient temperatures and at pressures slightly greater than ambient. The enthalpies of formation are low. They consist of one component metal systems in some cases, such as V or Nb, or, more commonly, they are binary metal systems of specific intermetallic compounds, such as Mg$_2$Ni, FeTi, or LaNi$_5$. Their hydrogen occlusion characteristics are such that they make excellent storage media, having hydrogen densities approaching twice that of liquid hydrogen. They saturate to a range of about 1.5 to 4 weight percent hydrogen. They have stimulated many new applications and the development of an alternative energy approach employing hydrogen as a versatile and useful secondary fuel.

2. Discussion. — 2.1 General Predictive Theories. — Since the discovery in the late 1960's of unstable hydrides and their hydrogen storage properties for energy applications, much progress has been made to elucidate their fundamental properties. Some of the more general criteria and patterns of formation are presented as follows (principally applicable to the transition metal intermetallic compound hydrides):

1. It is necessary that at least one of the elemental components for binary or ternary intermetallic compounds be a stable hydride former.

2. The formation of an unstable hydride proceeds at relatively low temperatures (ambient and slightly
above). Thus, the appearance of a new crystal structure as a result of the hydrogen absorption is accompanied by very small diffusional changes in the positions of the metal atoms. The hydride structure is essentially derived from the intermetallic compound structure by sub-lattice movements of the metal atoms.

3. The binary metallic system acts more like a two-rather than three-component system when it absorbs hydrogen. As a result, the phase stability of the system may not be in its most favored thermodynamic configuration.

4. When the system is heated to an elevated temperature, the atoms are free to diffuse more readily. The ambient temperature hydride phase then tends to decompose into a more stable thermodynamic configuration. The formation of the hydride of the one component which is a stable hydride former is likely.

5. Many binary systems which contain more than one intermetallic compound demonstrate hydride stabilities of the respective compounds as a function of composition in proportion to the weighted average of stabilities of the elemental hydrides of the component metals. This phenomenon has been observed by various investigators such as Clinton et al. [6] in the Pr-Co system, Buschow et al. [7], in Th-base binary systems, and Busch et al. [8], in the La-Ni system. The best example is that of Reference [8] for the La-Ni-H system. A good linear plot of the heat of formation of hydrides of the respective hydride compounds: \(\text{LaH}_2, \text{La}_2\text{Ni}_3\text{H}_{19}, \text{LaNiH}_{3.9}, \) and \(\text{LaNi}_2\text{H}_5, \) as a function of increasing nickel composition was observed.

6. Along with the diluent effect on enthalpy-of-hydride-formation by the non-hydride former atoms in a binary series of intermetallic compounds, the saturation capacity (or \(H/M \)) is generally observed to decrease with increasing non-hydride former content. Examples of this effect are observed in references [6, 7] and [8].

7. It has been proposed that the number of available equivalent interstitial positions in the \(\text{AB}_n \) (where \(n > 1 \)) intermetallic compound are involved in determining the total hydrogen saturation. The studies of Lakner et al. [9] are the best evidence for this. An additional third plateau for the \(\text{LaCo}_2\text{H}_9 \) system was discovered by the application of ultra-high pressure (1 250 atm) bringing the stoichiometry to \(\text{LaCo}_2\text{H}_9 \). The maximum number of equivalent interstitial positions is reported to be nine. Studies in our laboratory [10] also indicate a correlation of the saturation of \(\text{AB}_2 \) and \(\text{AB}_4 \) hydrides with the number of certain types of tetrahedral holes in the lattice. Also, the size of the A atom has been hypothesized as being determinative of hydrogen absorption capacity. This assumption stems from the model of van Mal et al. [11] from which they formulate the Rule of Reversed Stability. This will be discussed more fully later. In the model for the formation of \(\text{AB}_n\text{H}_{2m} \), a geometric configuration is required in which the hydrogen separates the A and B atoms. Thus, the larger the A atom, the more the number of H atoms is required to separate A and B atoms.

There are three additional predictive approaches which have been proposed with a more analytical basis from which one can arrive at relative stability or semi-quantitative stability information. These are as follows:

a) The Hildebrand-Scott solubility parameter was developed for the prediction of intermetallic compound hydride storage materials by Lawson et al. [12]. Lawson postulates that the solubility of one material, such as hydrogen, in another, such as an intermetallic compound, depends on the matching of their solubility parameters. He calculates the solubility parameter by means of the following equation:

\[
\delta^2 = \frac{\Delta H_s - RT}{V}
\]

where \(\delta \) = the solubility parameter,
\(\Delta H_s \) = the heat of sublimation,
\(V \) = the atomic volume,
\(T \) = the absolute temperature,
\(R \) = the gas constant.

Lawson calculates the solubility parameter (\(\delta \)) of hydrogen by considering it a metal. He obtains reasonably good agreement between the \(\delta \) of hydrogen and that of the currently more attractive compounds such as \(\text{LaNi}_5 \) and \(\text{FeTi} \).

b) One of the best known predictive approaches is the Rule of Reversed Stability. This was developed by Miedema [13, 14, 15] and van Mal et al. [11]. It states that the more stable the intermetallic compound, the less stable is its hydride. It employs the heats of formation of the various components which contribute to formation of a ternary hydride. The heat of formation of a ternary hydride is obtained as follows:

\[
\Delta H(\text{AB}_n\text{H}_{2m}) = \Delta H(\text{AH}_m) + \Delta H(\text{BN}_n\text{H}_m) - \Delta H(\text{AB}_n).
\]

The equation is applicable for any transition metal intermetallic compound, \(\text{AB}_n \), with \(n > 1 \). This rule was developed initially for lanthanum compounds, \(\text{AB}_n \), but it has been generalized and applies to the other transition metals as well. The model requires that the metal A form a stable binary hydride, as in the case of lanthanum. The rule is not only one which can be employed to screen candidate intermetallic compounds for the appropriate and desired stability range. It can also be employed for tailoring or adjust-
ing the pressure-composition plateaus to lesser or
greater stability for a binary intermetallic compound
by ternary additions to either component of the ABn
compound.

There are some other limitations to the rule. Thus,
the first row transition metal compounds behave
somewhat anomalously according to the reversed
stability rule.

c) Another very useful predictive approach was
developed by Lundin, Lynch, and Magee [16]. It
can be applied to the screening of new compound can-
didates and for adjusting the stability of known com-
 pound hydrides to required specifications. The
approach has been termed the size-stability correla-
tion. The initial discovery of this effect in our lab-
oratories many years ago [17] for pure elemental
hydrides was first tested for these lesser stable hydrides
in 1975 [18]. It was found to operate much more
effectively for the unstable class of hydrides. The
correlation more specifically states that the larger
the interstitial hole size for hydrogen occupancy,
the more stable is the compound. A separate correla-
tion exists for each homologous series of compounds,
each with the same structure type, ABn, where n ≥ 1.

A plot of the logarithm of the pressure plateau at a
consistent isotherm temperature versus the interstitial
hole size yields a correlation line. Once established,
this correlation line can be applied to adjust plateau
pressures either up or down very conveniently with
minor ternary metal alloy additions. The size of the
metal solute atom addition can be smaller or larger
than the A or B atom in the ABn compound it replaces.
This correspondingly adjusts the interstitial hole to a
smaller or larger size, which results in the expected
lesser or greater hydride stability, respectively. It
has been the experience of the author that very few
exceptions to this size-stability correlation have been
noted. The original family of materials employed
to develop this approach was the series of rare earth
pentanickel and pentacobalt compounds. The corre-
lation has also been quantitatively tested with AB
intermetallic compounds of B2 type structures (TiFe,
TiCo, TiNi and minor ternary solute additions) and
AB2 Laves phases. Qualitatively, it has been confirmed
at our laboratory with many other structure types
with a variety of stoichiometries. The size-stability
correlation can be employed with several short cut
modifications of the size factor. A good qualitative
fit of the correlation can be had by substituting the
atomic volume for interstitial hole size. The atomic
volume can be conveniently calculated from the
intermetallic compound lattice parameters. This
approach has often been used for predictive screening
studies in our laboratory, particularly when the struc-
ture is complex and the interstitial hole size calcula-
tion is difficult. It has likewise been employed by
other investigators [19, 20, 21].

An even quicker technique which yields very good
results is to employ the atomic size of the adatom
(solute atom) and compare it with the atomic size of
the atom it is replacing, either partially or fully. For
instance, the adatom can either fully replace the A or B
atom in the compound, ABn. If it is larger than A or B,
the hydride is stabilized, and if it is smaller, the
hydride is destabilized. In the case of the adatom par-
tially replacing either A or B, the same stability
correlation occurs. The adatom must be within the
solubility limit so that the structure type does not
change. This technique becomes more quantitative
when one knows the stability (pressure plateau)
from a specific isotherm of the compound. The advan-
tage is that no lattice parameter data are required
to make a prediction. One only needs a table of
atomic sizes which is readily available from many
texts or reference books.

The steep slope of the correlation line also is indi-
cative of the sensitivity of these hydrides to minor
changes in the size function. Different rare earths or
solute additions thereto and different solute additions
to replace the Ni will cause a rather large change in
stability. The slope of the correlation line for the
CsCl, AB compounds is even more steep. Certain
solute additions can compound this sensitivity further.
For instance, the addition of 0.5 or 1.0 atomic percent
of aluminum to partially replace Ti in FeTi causes a
distinct destabilization of the FeTi-hydrogen system.
This modification is the only solute addition known
to destabilize the hydride of FeTi and does so in a
very powerful way. An alloy such as FeTi0.98Al0.02
will have a 25 °C first plateau at about 8 atm; and
FeTi0.99Al0.01 at about 6 atm, compared to 3.75 atm
for the FeTi first plateau [22]. No lattice or hole
sizes parameters are required for the compound or its
modification to make a prediction of the type of
stability change.

Whether one uses the interstitial hole size, the
atomic volume (based on lattice parameters) or
the comparative atom size approach, the results are similar
because all of them shrink or expand in proportion
to a good approximation). The interstitial hole size
is felt to be the most satisfying, fundamentally, if
one is sure of the type of occupancy. The B-rich, close-
packed structures usually have about three types of
tetrahedral interstitial holes; AB3, A2B2, and B4.
The B4 hole is not expected to fill. Octahedral holes
also have the possibility for filling, but from neutron
diffraction data, the initial filling of tetrahedral holes
is more likely for many intermetallic compound
structure types. Sequential or even mixed filling of
tetrahedral and octahedral holes has also been noted.
The presence of two or more plateaus might also be
attributable to sequential filling from one type of hole
to another, but no correlation has been determined.

The correlation employing the interstitial hole
size using the hard sphere model is an assumption,
but probably not a bad assumption. One knows that
the hydrogen is not a hard sphere nor are the metallic
atoms which surround it. The fine details of stability
are better represented by the interstitial hole, because
the filling of one of the types AB₃, A₂B₂, or the octa-
hedral hole, will each present a different bonding
characteristic. Actually, the hole type, the size, and
the type of coordination are contributors to the
bonding. Obviously, the geometric factor is not
totally determinative of the stability since the electro-
nic structure of metallic atoms and their interaction
with each other and the hydrogen are also important.

Other effects such as residual mechanical strain or
impurity content from interstitial contamination or
from metallic impurities will cause minor stability
changes because of the extreme sensitivity of the
stability to hole size. Thus, different commercial
sources of metal components, the type of or care in
melting, the atmosphere and temperature of heat
treatment, the residual strain from mechanical pro-
cessing, and other processing variables in the history
of handling these materials will cause small stability
variations.

d) A more fundamental approach to predictive
capability is the theoretical modeling of Switen-
dek [23, 24]. Band structure calculations were
employed for a series of the transition metal hydrides.
He found that hydrogen contributes S-like states in a
band at rather low energy levels below the Fermi level
and d-band. The energy level of this band is determin-
ed by hydrogen-hydrogen separation. A small separa-
tion causes the band to increase in energy. A nominal
distance of 2.1 Å or less of the H-H distance is
thought to cause instability. The electrons associated
with the hydrogen are not accepted if the band energy
is too high. A large separation will result in a low
lying band which can more readily be filled with the
electron from the hydrogen. Thus, the hydrogen is
accepted in the lattice. As the lattice fills with hydro-
gen, the spacing will decrease and the structure will
saturate. The band calculations are difficult and have
limited practical application to the screening of new
hydride candidates.

e) Another rather cursory and still unreliable
technique that has been proposed for prediction of
total hydrogen saturation is that of electron concen-
tration effects. Evidence does exist that the larger
the electron-to-atom ratio for the compound, the less
the total solubility for hydrogen. This effect was
discussed earlier for the Pr-Co [6] and the La-Ni [8]
systems. The early work of Pebler and Gulbransen [25]
indicated the same relationship for Laves phases of Zr
and the first row transition metals; V, Cr, Mn, Fe,
and Co. Recent studies by Shaltiel et al. [26] on
Laves phase intermetallic compounds of pseudobinary
systems between Zr(Co,M₁₋ₓ)₂ and Zr(Fe,M₁₋ₓ)₂
where M = V, Cr, and Mn demonstrated that the
hydrogen capacity decreased as a function of an
increase of the 3d electron occupation across the 3d
transition metal series.

f) Although not a stability or hydrogen absorption
criteria, per se, a study by Lundin and Lynch [27]
of the hysteresis effects observed in these unstable
intermetallic compound hydrides is useful for under-
standing hysteresis in these systems. A model is pro-
posed based on induced lattice strains during hydro-
gen absorption and its relief on desorption. The
strain and its reversal cause a hysteresis in the intersti-
tial hole size which can be correlated with the size-
stability criterion. Hysteresis was proposed to be an
irreversible process rather than just metastability.
Using the relationship \(\ln \left(\frac{P_2}{P_1} \right) = \text{constant} \) where
\(P_2 \) is the absorption plateau pressure and \(P_1 \) is the
desorption plateau pressure, for any one tempera-
ture, the hysteresis can be calculated for any other
temperature within reasonable error.

2.2 PROPERTIES. — Many of the rare earth contain-
ing intermetallic compound systems have the ability
to store large quantities of hydrogen. Nearly 60
atomic percent hydrogen, an \(N_H \) of hydrogen of
7.58 or a weight percent hydrogen of about 1.5 can
be occluded in LaNi₅. The \(N_H \) represents an 30% in-
crease in density of hydrogen in the hydride over liquid hydrogen. However, the density of LaNi₅ is
rather high (8.25 g/cc). On a weight percent hydrogen
basis, there are other hydrides which exceed that of
LaNi₅ hydride, particularly the lightweight hydrides.
Thus, where weight is not important, the rare earth
(RE)Ni₅-hydrides excel. One can begin to see from
the above that the properties are important, and the
hydride selection is based on the most optimum
properties as dictated by the application. Many
properties make up the composite of best properties
for a certain application. These properties will be
briefly enumerated in the subsequent discussions.

The properties of most importance are presented
below (not necessarily in order of priority):

1. Pressure - temperature - composition relations-
ships.
2. Heat of formation of hydride.
3. Cost per unit of stored hydrogen.
4. Usable weight-percent hydrogen.
5. Density of hydride.
6. Kinetics of reaction in absorption and desorp-
tion.
7. Volume expansion on hydriding.
8. Hysteresis between absorption and desorption.
9. Contamination resistance.
10. Recyclability.
11. Safety.

The specific modifications of the LaNi₅-H or
MM*Ni₅-H systems offer a large range of pressure-
temperature-composition-relationships for a variety
of applications. A thorough discussion of these types
and their properties will not be made due to the
limitations of scope of this paper. Only those which
have commercial potential and whose family of
isotherms have been determined are to be considered. One is referred to the specific investigation (references are included) for further details. The individual types are listed below:

1. Ce-free, MMNi₅ [28].
2. Caₓ₋ₓMₐₓNi₅ [29].
3. Laₙ [30, 31] or MMNi₅₋ₓMₐₓ [30].
4. Caₓ₋ₓMMₓNi₅₋ₓCuₓ [32].
5. Laₙ [31, 33] or MMNi₅₋ₓAlₓ [34].
6. MMNi₅₋ₓCuₓ [34].
7. MMNi₅₋ₓFeₓ [34].

The use of MM to replace La in selected systems can reduce the cost of the intermetallic compound considerably. The current price of La is about $20/lb ($44/kg), whereas MM is priced at about $4/lb ($8.93/kg). However, in some cases, only the LaNi₅ or some one of its modifications will have the required properties to match the application. Smaller cost savings will be realized on partial replacement of Ni by Mn, Cu, Al, and Fe when the properties are required.

The following table [34] presents the approximate costs, hydrogen capacities, stabilities at 25 °C of as-cast materials, and other pertinent information for the most commercially potential and available rare earth intermetallic compounds or their modifications.

2.3 APPLICATIONS.

The state-of-the-art of storage materials has reached the point where applications and hardware are beginning to evidence themselves in prototype systems. The storage of hydrogen as a hydride is a key link in the successful evaluation of the Hydrogen Economy. Certainly the rare-earth intermetallic compounds will make an integral and important contribution to the various applications that will be evolving. However, one cannot yet see a clear distinction in the role that the rare earth compounds will assume, since it is too early to anticipate trends. Currently for potential large scale uses FeTi-base storage materials are predominating because of availability at the lowest cost. However, other smaller scale applications are currently being developed where rare earth compounds are employed due to certain more desirable properties.

The following list of applications and/or potential applications involving hydride storage is intended to give the reader a generalized compendium of the important hardware-, process-, or device-oriented uses.

3. Applications, potential and realized.

- Automobiles.
- Buses.
- Industrial Vehicles.
- Railroads.
- Storage of converted electrical off-peak energy from power plants.
- Storage of converted wind, solar, or geothermal energy.
- Storage of converted industrial waste heat energy.
- Storage of feedstock for chemical, petrochemical, or other industrial uses.
- Fuel storage for industrial, home, farm or utility power applications.
- Fuel storage for electrochemical systems.
- Storage of hydrogen for and from coal gasification processes.
- Storage for a power cycle working fluid.
- Storage for fuel cell application.
- Application for heat pumps for heating, air-conditioning, or refrigerative purposes.
- Thermal compressor.
- Chemical storage in solar power applications for home heating or air-conditioning.
- Separation of hydrogen isotopes.
- Hydrogen pump.
- Source for high-purity hydrogen.
- Getters.

Table I.

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Density g/cm³</th>
<th>Dissociation P at H/M = 0.5 atm</th>
<th>Wt % usable H₂</th>
<th>Raw materials cost /$/g usable H₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeFree, MMNi₅</td>
<td>8.5</td>
<td>4.2</td>
<td>1.31</td>
<td>$12.83</td>
</tr>
<tr>
<td>Caₓ₋ₓMₐₓNi₅</td>
<td>7.2</td>
<td>3.8</td>
<td>1.11</td>
<td>4.98</td>
</tr>
<tr>
<td>MMNi₅₋ₓMₐₓ</td>
<td>8.1</td>
<td>3.7</td>
<td>1.15</td>
<td>5.77</td>
</tr>
<tr>
<td>MMNi₅₋ₓAlₓ</td>
<td>8.5</td>
<td>8.0</td>
<td>0.95</td>
<td>5.92</td>
</tr>
<tr>
<td>MMNi₅₋ₓCuₓ</td>
<td>8.3</td>
<td>7.6</td>
<td>0.95</td>
<td>5.26</td>
</tr>
<tr>
<td>MMNi₅₋ₓFeₓ</td>
<td>8.3</td>
<td>1.7</td>
<td>1.36</td>
<td>5.40</td>
</tr>
<tr>
<td>LaNi₅ (Present)</td>
<td>8.3</td>
<td>1.7</td>
<td>1.36</td>
<td>17.26</td>
</tr>
<tr>
<td>LaNi₅ (Future)</td>
<td>8.3</td>
<td>1.7</td>
<td>1.36</td>
<td>9.45</td>
</tr>
<tr>
<td>FeTi</td>
<td>6.5</td>
<td>4.2</td>
<td>1.24</td>
<td>3.05</td>
</tr>
</tbody>
</table>
References

[22] LUNDIN, C. and LYNCH, F., To be published.