SURFACE TENSION AND DENSITY PROFILE OF LIQUID 3He+
L. Senbetu, C. Woo

To cite this version:
L. Senbetu, C. Woo. SURFACE TENSION AND DENSITY PROFILE OF LIQUID 3He+. Journal de Physique Colloques, 1978, 39 (C6), pp.C6-205-C6-206. <10.1051/jphyscol:1978691>. <jpa-00218371>

HAL Id: jpa-00218371
https://hal.archives-ouvertes.fr/jpa-00218371
Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SURFACE TENSION AND DENSITY PROFILE OF LIQUID 3He

L. Senbetu and C.W. Woo

Department of Physics and Astronomy, Northwestern University, Evanston, IL 60201, U.S.A.

Abstract.—The surface tension and density profile of liquid 3He at zero temperature are calculated by a new variational technique. Liquid-structure effects are included by using the measured radial distribution function of bulk 3He as input. The calculation yields a surface tension of $0.134 \text{ K}\cdot\text{Å}^2$ which compares well with the extrapolated experimental result. We predict a surface region that is about two atomic layers in thickness. But in contrast to the recent calculation of Mackie and Woo/3/, no high-density region results even though we use the same radial distribution function as input.

The surface tension of liquid 3He has been measured over a range of temperatures/1/. But experiment on the density profile and the thickness of the surface layer is lacking. On the theoretical side there have been some recent microscopic calculations/2-3/ with some surprising predictions/3/ on the density profile. We present here a new approach based on variations on an assumed effective surface potential to get more insight about the surface properties of liquid 3He.

Consider N 3He atoms in box $0 \leq x \leq L, 0 \leq y < L$ and $-L \leq z < L$ with a free surface in the neighbourhood of $z=0$. We assume the Hamiltonian of the system to be

$$H = \sum_{i=1}^{N} \frac{p_i^2}{2m} + \sum_{1 \leq i < j \leq N} v(r_{ij})$$

where $v(r)$ denotes the 3He-3He potential (customarily Lennard-Jones 6-12 with deBoer-Michels/4/ parameters).

We take the trial ground state many-body wave function in the form

$$\psi = D_s \phi$$

where D_s is a Slater determinant model function. The single particle orbitals $\phi_{k_x, k_y, k_z}(\vec{r})$ that form the determinant are chosen to satisfy the symmetry and boundary conditions of the problem. This is accomplished in this work by assuming a model surface potential of the form

$$v_s(z) = \frac{1}{2} v_0 \tanh \left(\frac{z - Z_0}{2a} \right)$$

and solving the Schrödinger equation with this potential for $\phi_{k_x, k_y, k_z}(\vec{r})$, in terms of hypergeometric functions. The energy expectation value E can then be expressed in terms of $u(r_{ij})$, $v_0(z)$, and the one-, two- and three-particle density functions/8/ defined by

$$p(n) = \frac{N!}{(N-n)!} \int \left(\frac{v_0^2}{2m} \right)^{n+1} \left(\frac{v_0^2}{2m} \right)^{N-n} \prod_{j=1}^{n} d^3r_j$$

with $n=1,2,3,...$

In particular $p^{(1)}(z) = p^{(1)}(z) = \rho(z)$ the density of the system.

The surface energy E_s is obtained by removing from E the bulk energy E_B and can be written as

$$E_s = \int dx \int dy \int dz \left[\rho(z) - \frac{B}{\rho_B} \rho(z) \right]$$

In deriving Equation (5) we have used the particle number conservation condition

$$\int dx \int dz \left[\rho(z) - \frac{B}{\rho_B} \rho(z) \right] = 0$$

where $\theta(z) = \int_0^z \rho(z') dz'$ and Z_0 is the position of the Gibb's surface. $c(z)$ and c_B are energy densities and ρ_B is the equilibrium bulk number density.

Assuming that we have solved the bulk uniform liquid problem, equation(5) indicates we need $\phi(z)$ and $c(z)$ to get the surface tension. To make the computation of $\rho(z)$ and $c(z)$ easier it was found necessary to make some approximations:

1) We use the experimental/5/ pair correle-
ii) We take \(u(r) = -(\text{balr})' \) with \(U = 2.556 \) Å and \(b = 1.138 \), from variational calculations performed for bulk \(^3\text{He} \).

iii) We make use of the Kirkwood superposition approximation/6/.

With these approximations \(\zeta(z) \) becomes a unique functional of \(p(z) \) only.

To obtain \(p(z) \) we solve a non-linear integral equation derived with the method of reference\(^171 \) and given by

\[
\ln F(1)(z_1|\lambda) = \ln F(1)(z_1|0) + 2\pi \int_0^\infty d\lambda \lambda \sum_{z_2} \int_0^\infty d\lambda' F(1)(z_2|\lambda') \zeta(z_1z_2) + G_1(z_1|\lambda)F(1)(z_1|\lambda) + G_2(z_1|\lambda)^2 \tag{7}
\]

where

\[
f(x) = \frac{e}{\pi} r u(r) g_\beta(r | \rho_\beta) \, dr \tag{8}
\]

\[
G_1(x) = \frac{e}{\pi} \int g_\beta(r | \rho_\beta) - 1 \, dr \tag{9}
\]

and

\[
G_2(x) = \frac{e}{\pi} \int g_\beta(r | \rho_\beta) - 1 \, 2 \, dr \tag{10}
\]

The coupling parameter \(\lambda \) has values \(0 < \lambda < 1 \) and \(F(1)(z_1|0) = \tilde{\rho}(z) \), while

\[
f(1)(z|0) = 2 \sum k_{x'} k_{y'} k_{z'} \zeta^{(1)}(z_{x' y' z'})^2 \tag{11}
\]

is the density of the non-interacting system. The sum in equation (11) is over occupied states up to the highest level characterized by \(k_N = (k_x^2 + k_y^2 + k_z^2)^{1/2} \), which is determined by requiring that the solution \(\tilde{p}(1)(z|0) \) of equation (7) be equal to \(\rho_\beta \) for \(z = \infty \).

Since the parameter \(Z_0 \) is determined by equation (6), \(v_0 \) and \(a \) are the only variational parameters. The physical surface energy is then determined by finding the absolute minimum with respect to both \(v_0 \) and \(a \), and is done in two stages as table I indicates.

Thus we obtained the surface tension to be 0.134 kJ/m², which compares reasonably well with experiment. The corresponding values of the parameters are \(v_0 = 6.90 \) K, \(a = 2.722 \) Å, \(Z_0 = 2.31 \) Å and \(k_N = 0.9137 \) Å⁻¹. Using \(v_0 \) and \(k_N \) we estimate a "work function" of about 0.20 K per atom. This study predicts a density profile with no high-density region, in contrast to the prediction of /3/. If the prediction of the latter is verified experimentally, the present result implies that the form of the

<table>
<thead>
<tr>
<th>(v_0) (K)</th>
<th>(Z_0/a)</th>
<th>(n) (Å)</th>
<th>(v_N) (kJ/m²)</th>
<th>Surface Tension(KJ/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.70</td>
<td>1.23</td>
<td>1.747</td>
<td>0.9035</td>
<td>0.155</td>
</tr>
<tr>
<td>6.90</td>
<td>1.26</td>
<td>1.733</td>
<td>0.9032</td>
<td>0.150</td>
</tr>
<tr>
<td>1.23</td>
<td>1.755</td>
<td>0.9027</td>
<td>0.150</td>
<td></td>
</tr>
<tr>
<td>7.10</td>
<td>1.31</td>
<td>1.719</td>
<td>0.9150</td>
<td>0.139</td>
</tr>
<tr>
<td>1.26</td>
<td>1.723</td>
<td>0.9150</td>
<td>0.139</td>
<td></td>
</tr>
<tr>
<td>1.30</td>
<td>1.725</td>
<td>0.9150</td>
<td>0.139</td>
<td></td>
</tr>
<tr>
<td>1.20</td>
<td>1.685</td>
<td>0.9250</td>
<td>0.149</td>
<td></td>
</tr>
<tr>
<td>1.22</td>
<td>1.682</td>
<td>0.9250</td>
<td>0.148</td>
<td></td>
</tr>
<tr>
<td>1.30</td>
<td>1.696</td>
<td>0.9234</td>
<td>0.132</td>
<td></td>
</tr>
</tbody>
</table>

Table I: Values of parameters: The underlined values are these for which the surface energy is a minimum for the respective \(v_0 \).

The effective surface potential chosen here is not sufficiently general. It should not be a smooth function of \(z \).

A detailed discussion of the method and results will be reported elsewhere/8/.

References

/1/ Zinov'eva,K.N., Soviet Phys. JETP 2 (1956) 774
/3/ Mackie,F.D. and Clark,R.C., Preprint 1977
/4/ deBoer,J. and Michels,A., Physica 5 (1938) 945
/5/ Mackie,F.D. and Woo,C.W., Phys. Rev. B to be published
/8/ Senbetu,L. and Woo,C.W., to be published.