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PARAMETERS OF A JOSEPHSON TUNNEL JUNCTION ARRAY PARAMETRIC A M P L I F I E R  

T. Claeson, S. Rudner and S. Wahlsten 

Physics Dept., Chalmers Univ. Of Techn., Fack, 5-402 20 Gijteborg, Sweden 

Rdsum6.- L'amplification paramdtrique d'un rdseau de jonctions est commandse par un champ magngtique 
Les paramstres exp6rimentaux sont en accord avec les estimations thdoriques. 

Abstract.- The parametric amplification in arrays of small tunnel junctions was turned via a magnetic 
field. The experimental parameters agree well with theoretical estimates. 

The non-linear inductance of a Josephson junc- the range of pump power, P:, for a signal gain, rs' 
tion makes it suitable as the active element in a within 3 dB of the max gain, and (iv) P+ for max r 

0 
high frequency parametric amplifier. Advantages are as a function of IJ. The fact that several of the 

the low pump power needed and the low noise tempe- parameters were evaluated by more than one method 

rature expected. This work utilizes arrays of small gave a valuable cross-check, 

Josephson tunnel junctions packed close together in 

a microstrip configuration. They were run in an un- 

biased, doubly degenerate mode, i.e. with the pump 

and signal frequencies being almost equal. We found 

it possible to tune the amplifiers to stable, high 

gain by a magnetic flux,$. Hence they could be opti- l o  

mized and their parameters evaluated. We will con- 

centrate upon the latter aspect and make comparisons 

with the theoretical model for the SUPARAMP (Super- - 
conducting Unbiased PARametric AMPlifier) developed E- 
by Feldman, Parrish and Chiao (FPC) / I / .  01 

3 
The FPC theory utilizes a simplified, voltage 5 

un 
clamped circuit model, reasonable for a tunnel junc- 

tion with its high capacitance,C. The main concept 

is the so called ING curve in the g-5 plane defined 

in figure 1. 0.01 

Experiments were done with arrays of 1, 10, 

30, or 40 Pb tunnel junctions 121. Pump and signal 
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frequencies (8-12 GHz) were applied via a circula- g = NR,/Z~ 

tor and the reflected powers detected by a spectrum 

analyzer or a superheterodyne receiver. Different 

values of I (0.1-10 ~/(mm)~) were obtained by va- J 
rying the oxidation temperature. In an array, the 

I 's of the individual tunnel junctions varied less 
J 
than about 20 %. 

The parameters I J,  % (the mean tunnel resis- 
tance), C, g, 5 ,  c,(the cos $ amplitude), N(the 

number of coherent junctions), ZO( the line impe- 

dance) and RJ ( the rf resistance) were determined 

by several methods (figure 11, namely (i) the I-V 

characteristic, (ii) the power reflection vs 

Fig. 1 : The behaviour of a SUPARAMP is characteri- 
zed by the two normalized parameters g and5 . The 
curve of Infinite Non-reentrant Gain (ING) divides 
the (g,E) plane in two regions. Above the curve, the 
gait, rs, has a smooth maximum as a function of pump 
power, P;, inset (a). As the ING curve is approa- 
ched, the gain increases at the expense of the po- 
werwidth, inset (b) . Below the curve, rs is a reen- 
trant function of P;, and the amplifier is unstable 
(c). A (g,<) point slightly above the ING curve 
should be chosen to give high, stable gain. Inset 
(d) shows the change of the peak gain along a path 
with g = 3.6 and 5 varying from 0.05 to 0.22. The 
SUPARAMP parameters, like g and 5 can be evaluated 
by determining the pump power at peak gain as a 
function of the magnetic field (d), the vower re- 

B=sin(2ae$/h)/(2ae$/h), (iii) the powerwidth, i.e. flection (e), and .the powerwidth, (a) and (b), the 
curves in (d) an (e) are theoretical fits. The squa- 
res represent experimental ING values of six of our 
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Results of l' vs P+ agree qualitatively with s 0 
 the'^^^ theory. As predicted, relatively low pump 
power (about to lo-' W) was needed for gain 

while the power width, AP, was 0.1-1 dB. We could 

determine the (g,c) value of the different opera- 

ting points, and in particular we could fix their 

values at infinite gain. The experimental (g,O 
ING 

values are given in figure 1. The excellent agree- 

ment with the theoretical curve confirms the con- 

cept of the ING curve and Strongly supports the 

FPC theory. 

50-90 %-of the tunnel junctions were coherent, 

i.e. participated in the amplification process. The 

values of R and $ almost coincided and C agreed 
J 

well with calculated values at 4.2 K. 

Saturation is a serious problem, increasing 

the fluctuation noise temperature and limiting the 

band width. A strong monochromatic signal can satu- 

rate the device, but this is no severe limitation 

as we noted a linear gain with output signals up to 

15 dB below the pump level. More serious is the sa- 

turation due to the broadband room temperature noi- 

se. The output noise power near the signal frequen- 

cy is plotted against the input noise temperature 

in Figure 2. 
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experimental values of the gain-bandwidth product 

(which disagree with theory) and the gain-power 

width (agreeing, cf figure 2) we get a striking 

agreement with the observed maximum output tempera- 

tures as shown in table I. 

Table I 

Parameters of saturated SUPARAMF's 

As the gain depends on the input noise level 

a conventional noise figure measurement on a satu- 

rated S U P W  will give an erroneous result. Ins- 

tead we have estimated T by measuring the signal N 
to noise ratio 141. Generally, we found very high 

values of TN, the higher the more saturated the am- 

plifier was, see table I. A larger N gives less sa- 

turation and a lower TN. Only in an amplifier where 

the bandwidth was limited to about 60 MHz, we could 

avoid noise limiting and estimated a TN of 30+20 K. 
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Fig. 2 : Output vs input noise temperature for dif- 
ferent gains obtained by pump powervariations (the 
pump levels are given in dBm for each set). The da- 
ta were taken for a value of 0.7 at 4.2 K. The 
crosses show that rs8* AF': is independent of satu- 
ration. 

Above a certain pump power, the output noise tem- 

perature decreases with increasing input noise tem- 

perature instead of approaching a maximally satura- 

ted output (or brightness) temperature T' as pre- 

dicted by Feldman 131. If we calculated T' with our 


