STIMULATED SPIN ECHO STUDIES OF 60Co NUCLEI ORIENTED IN IRON

H. Foster, P. Cooke, D. Chaplin, P. Lynam, D. Swan, G. Wilson

To cite this version:

HAL Id: jpa-00218009
https://hal.archives-ouvertes.fr/jpa-00218009
Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
STIMULATED SPIN ECHO STUDIES OF 60Co NUCLEI ORIENTED IN IRON

Department of Physics, University of New South Wales, Royal Military College, Duntroon, A.C.T. 2600, Australia

Résatm.- Une technique utilisant quatre impulsions résonnantes est utilisée afin de produire des échos de spin stimulés qui sont détectés à l'aide du rayonnement nucléaire. Ces échos présentent une période d'extinction, fonction de la relaxation spin-réseau, au contraire de l'effet observé dans les expériences à trois impulsions seulement.

Abstract.- A four-pulse resonance technique has been developed to produce stimulated spin echoes which are then observed by radiative detection. These echoes show a decay time which depends on the spin-lattice relaxation ; this is not the case for the echoes produced by the triple-pulse sequence.

INTRODUCTION AND THEORY.- Recently we reported/1/ observations by radiative detection of spin echoes, produced by triple-pulse sequences, for 60Co nuclei oriented in iron. Studies/2/ of the dependence of the echo amplitude upon pulse interval showed that, after an rf pulse, the nuclear spins irreversibly lose their coherence in the transverse plane with a decay time $T_2 \sim 1$-2 ms. This is a very short time for a dilute alloy when compared to the spin-lattice relaxation time $T_1 \approx 75$ s/3/ for the conditions of reference/2/. To study further the application of pulsed resonance techniques in nuclear orientation, we have applied a four-pulse sequence, with intervals T', T'' and T''', to the same sample. Whereas the echo decay time for a triple-pulse sequence should relate to T_2, the decay time for a four-pulse (stimulated echo) sequence, should, under the correct conditions, relate to T_1. In nuclear orientation experiments, the fourth pulse is used to return a component of the transverse magnetization to the z-axis and the γ-anisotropy is then measured as a function of T'''. The stimulated echo will appear as a change in this anisotropy when $T''' = T'$.

To calculate the amplitude of the expected echo signal it is necessary to integrate over all spins since rf fields H_1 which are comparable in magnitude only with the inhomogeneous broadening have been used. For T', $T'' < T_1$, T_2 and a system in which the major term in the γ-anisotropy is $P_2(\cos \theta)$, the fractional change in that anisotropy after the pulse sequence is given by

$$S_2 = 1 - P_2(\cos \theta) = 1 - \int_{\infty}^{\infty} \rho(\omega) P_2(\cos \theta) d(\omega - \omega_0)$$

where ω_0 is the centre of the distribution (assumed to be Gaussian) of resonant angular frequencies θ is the final angle between a spin and the z-axis, after allowing for rotations during each pulse and rotation about the z-axis during each pulse interval. Also we define a parameter R as $\omega_1/\Delta \omega$ where $\Delta \omega$ is the half-width at half-maximum of the inhomogeneously broadened resonant frequency and ω_1 is the rf angular frequency.

Calculated spin echo line shapes for equal 90° pulses at values of R of 0 and 0.45 are given in figure 1 : $R = 0.45$ corresponds to our experimental conditions. For a true 90° pulse sequence ($R = \infty$), harmonic sub echoes are absent. For more general turn angles, S_2 has twenty echoes at times $T''' = 2/\Delta \omega = 16$ ms. The arrows indicate the principle stimulated echo.
later than the third rf pulse/4/. Even for
\(R = 0.45 \) the stimulated echo remains prominent des-
pite the additional competing structure due to the
harmonic sub echoes and their broadening due to
other effective angles of rotation centred on 90°.

EXPERIMENTAL DETAILS AND RESULTS.- The sample used
was that of references/1/ and /2/ with a calcula-
ted fractional concentration of \(^{60}Co \) atoms \(\approx 5 \times \)
\(10^{-5} \) in the diffusion layer. A 0.1 T polarizing
field was used, corresponding to a resonant fre-
quency of 165.5 MHz; the linewidth, \(\Delta \omega / 2\pi \), was
0.5 MHz. No evidence for \(^{60}Co \) satellite structu-
re or for a \(^{60}Co \) resonance could be found in
this heavily doped sample.

After each four-pulse sequence, the time de-
pendence of the \(\gamma \)-anisotropy was determined for
250s. The "signal" was obtained by computer extra-
polation of the anisotropy back to a time immedia-
tely after the fourth pulse. No signals were obser-
vied when rf frequencies a few MHz either side of
resonance were used, indicating that off-resonant
heating was negligible.

For \(\tau' = 5 \) \(\mu \)s stimulated echoes were observed
for values of \(\tau'' \) of 1, 10, 25 and 40 s (figure
2). For these values of \(\tau' \) and \(\tau'' \) and the estab-
lished short \(\tau_2 \), the baseline of the stimulated echo
appears well defined, being subject only to inter-
ference from negligible weaker harmonics of this
echo. Comparison of the calculated and observed li-
neshapes for \(\tau'' = 1 \) s shows the same general beha-
viour though the amplitude of the observed shape is
somewhat lower, as in/1/. This reduction is proba-
bly associated with inhomogeneous broadening of
the rf field \(H_1 \).

A simple spin-temperature analysis of the
time dependence of the \(\gamma \)-anisotropy after removal
of a frequency modulated c.w. rf field yielded a
value \(\tau_1 = (80 \pm 5) \) s at 12 mK for a 0.1 T applied
field. This is comparable with the decay time of
the amplitude of the stimulated echo. Hence we can
conclude that the four-pulse nuclear orientation
stimulated echo technique does lead to a relaxation
time which is related to \(\tau_1 \), rather than the much
faster \(\tau_2 \). The previously observed short value for
\(\tau_2 \) appears to validate the use of the spin tempera-
ture concept in the analysis of spin-lattice rela-
xation. Further experiments on \(^{60}Co \) samples of
varied concentration are in progress. These should
establish whether a grain boundary diffusion mecha-
nism exists, causing an anomalously high local con-
centration in this sample, or whether the results
presented here indicate a general property of the
very dilute \(^{60}Co \) system.

References
/1/ Foster, H.R., Cooke, P., Chaplin, D.H., Lynam, P. and
Wilson, G.V.H., Phys. Rev. Letters 38 (1977) 1546
/2/ Foster, H.R., Cooke, P., Chaplin, D.H., Lynam, P.,
Swan, D.E. and Wilson, G.V.H., Hyperfine Inter-
actions 4 (1978) 357
/3/ Klein,E., Hyperfine Interactions 3 (1977) 389
/4/ Cooke, P., Chaplin, D.H. and Wilson, G.V.H., to be
published

Fig. 2 : Observed stimulated echo lineshapes for
\(\tau' = 5 \) \(\mu \)s and various values of \(\tau'' \).