MAGNETIC PROPERTIES OF AMORPHOUS Ni-Pd-Si ALLOYS.
A. Zentko, Do-Cong-Vinh, A. Zentková, P. Duhaj

To cite this version:

HAL Id: jpa-00217893
https://hal.archives-ouvertes.fr/jpa-00217893
Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
MAGNETIC PROPERTIES OF AMORPHOUS Ni-Pd-Si ALLOYS.

A. Zentko, Do-cong-vinh, A. Zentkova*, and P. Duhaj**

*Institute of Experimental Physics, Slovak Acad.of Sciences, 04154 Kosice, Czechoslovakia.
**Faculty of Sciences, P.J. Safarik University, Kosice, Czechoslovakia.
***Institute of Physics, Slovak Academy of Sciences, Bratislava, Czechoslovakia.

Résumé.- La substitution partielle du palladium par des éléments possédant des électrons 3d tels que Fe, Co ou Ni change profondément les propriétés magnétiques de l’alliage amorphe Pd-Si. Nous avons étudié systématiquement la susceptibilité magnétique des alliages amorphes (NiPd)_{1-x}Fe Si en fonction de la température (4,2 < T < 580 K) et de la concentration (5 < x < 50). On discute brièvement de résultats obtenus.

Abstract.- The magnetic properties of amorphous Pd - Si alloys are significantly changed by partly substituting the Pd with 3d elements such as Fe, Co and Ni. The low-field magnetic susceptibility of amorphous (NiPd)_{1-x}Fe Si alloys was systematically investigated as a function of temperature (4.2 < T < 580 K) and concentration (5 < x < 50). We briefly discuss the obtained data.

INTRODUCTION.- In recent years, a number of amorphous metallic alloys based on Pd - Si have been prepared and investigated. The composition of these alloys is generally M Pd Si where M stands for Co, Fe, Cr, Mn, and Ni. These alloys, except for those containing Ni, exhibit localized moments and a Kondo-Type resistivity anomaly /1-3/. The magnetic properties of NiPd Si alloys were investigated by C.C. Tsuei, P. Duwez and R. Hasegawa /4,5/ for x ranging from 0 to 15 at. %. In this paper we present the results of the study of temperature dependence of the low-field magnetic susceptibility of amorphous (NiPd)_{1-x}Fe Si alloys with the content of Ni atoms up to 50 at. %.

EXPERIMENTAL METHODS.- All the amorphous alloys used in this study were prepared by rapid quenching technique. The concentration range within which an amorphous structure could be obtained was from 0 to 50 at. % of Ni. The ac susceptibility was measured by an induction method using the ac bridge of mutual inductance of the Hartshorn type. The alternating field used was about 60 A/m. The susceptibility was investigated in the temperature range 4.2 - 580 K.

RESULTS AND DISCUSSION.- The χ(T) results for alloys with Ni content x ≤ 20 are summarized in figure 1 and those for more concentrated alloys in figure 2. The inverse susceptibility χ(T) is also shown in these figures. The temperature dependence χ(T) can be characterized as follows: A constant and rather high value of the susceptibility in the temperature range from 4.2 K to room temperature.

At higher temperature the Curie-Weiss law was observed. Above about 450 K significant deviations from the linear behaviour of χ(T) have been observed. These deviations are connected with the process of crystallization of the metastable amorphous phase. The variation of χ with concentration x is characterized by a peak arising at a certain concentration as shown in figure 3, where curve 1...
is for constant part of $\chi(T)$, curve 2 for $T = 375$ K and curve 3 for $T = 475$ K.

Fig. 2: Magnetic susceptibility vs temperature for the (Ni$_{1-x}$Pd$_x$)$_{Si_{17}}$ alloys with $x \geq 30$ at.%.

The constant low-temperature susceptibility suggests a description in terms of a band model of magnetism.

Fig. 3: Concentration dependence of magnetic susceptibility.

The high temperature decrease of $\chi(T)$ corresponds to a Curie term of between 0.92×10^{-3} and 3.7×10^{-3}. C is a constant of order 10^2. No consistent description can be found if the high-temperature Curie-Weiss behaviour is chosen as starting point. It is at present not clear whether this latter feature indicates a transition to a new state, or it can be connected with the single impurity effect discussed in /6/ by Cooper and Miljak.

References