NUCLEAR SPIN-LATTICE RELAXATION AND EVIDENCE FOR A LOW TEMPERATURE PHASE TRANSITION IN SOLID n-D2

N. Sullivan, M. Devoret

To cite this version:

HAL Id: jpa-00217891
https://hal.archives-ouvertes.fr/jpa-00217891

Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
NUCLEAR SPIN-LATTICE RELAXATION AND EVIDENCE FOR A LOW TEMPERATURE PHASE TRANSITION IN SOLID n-D$_2$

N.S. Sullivan† and M. Devoret,
Service de Physique du Solide et de Résonance Magnétique, Centre d'Etudes Nucléaires de Saclay, BP 2, 91190 Gif sur Yvette, France.

Abstract.- We present new results for the nuclear spin-lattice relaxation times in solid n-D$_2$ at low temperatures. There is an abrupt change in the temperature dependence of the relaxation times at $T \approx 170$ mK and we interpret this in terms of a possible transition to a quadrupolar glass phase.

Recent low temperature N.M.R. experiments on solid H$_2$ at low ortho hydrogen concentrations /1-5/ have shown evidence for the existence of transitions to a quadrupolar glass phase in which the orientational degrees of freedom of the ortho molecules are frozen at random. We present here preliminary results of a study of the nuclear spin-lattice relaxation times of solid n-D$_2$($X(J=1)=0.33$) which show an abrupt change in their temperature dependence analogous to the changes observed in solid H$_2$ for low ortho H$_2$ concentrations /1/.

The interest in solid H$_2$ and solid D$_2$ lies in their quantum crystal aspects. The orbital angular momentum J is a good quantum number and at low temperatures only the lowest J values $J=0$ and $J=1$ need to be considered. Spin statistics require that we consider two molecular species: ortho H$_2$($J=1$, I=1) and para H$_2$($J=0$, I=0) and para D$_2$($J=1$, I=1) and ortho D$_2$($J=0$, I=0 and I=2). I$ is the total nuclear spin. At high temperatures the $J=1$ molecules behave as an assembly of weakly interacting rotators but for temperatures $T<3K$, the anisotropic intermolecular interactions (principally electrostatic quadrupole-quadrupole) result in a collective orientational ordering of the $J=1$ molecules. The EQQ interaction of an isolated pair is minimized for a "tee" configuration but it is impossible to realize a 3-D close packed lattice with all the molecules mutually perpendicular. The system is "frustrated" /6/ and for pure ortho H$_2$ and pure para D$_2$ the total free energy is minimized when the molecules are aligned parallel to the body diagonal \mathbf{e}_a of an f.c.c. lattice /7/ (Pm$_3$ space group). The ordered state is characterized by the order parameters $\langle 3J^2 \rangle_{Z}$ and one must use many body quantum crystal techniques in order to account for the zero point fluctuations of the orientations of the molecules.

As the concentration X of the $J=1$ molecules is reduced, the zero point fluctuations increase /8/, the frustration decreases and the features of the long range orientationally ordered Pa$_3$ phase are no longer observed below a critical concentration, $X_c(H_2)=0.55$ /9/ and $X_c(D_2)=0.59$ /10/. For concentrations $X<X_c$, N.M.R. experiments on solid H$_2$/2, 4/ have shown that as the temperature is lowered, there is a transition to a quadrupolar glass phase in which the orientational degrees of freedom are frozen locally. The N.M.R. spectra can be interpreted in terms of a broad distribution of local order parameters $\sigma_i=\langle 3J^2 \rangle_{Z_i}$ where the local axes \mathbf{e}_i vary at random from one site to another. The spin 1 quadrupolar glass phase observed in solid H$_2$ provides an interesting challenge for the spin glass theories.

In order to obtain further experimental evidence and additional information on the quadrupolar glass phases we sought a second example of this phase and we have carried out N.M.R. studies on solid n-D$_2$. In the ordered phase of solid D$_2$ at high para concentrations one observes an important narrow central line (2 kHz width) due to the $I=2(J=0)$ spins superimposed on a weaker broad line (75 kHz

† CEA-Saclay, DPh/SPSM.
width) attributed to the $I=1$ spins ($J=1$) /1/ C.W. studies of solid D$_2$ for $X = 0.33$ show no evidence of the anticipated broad $I=1$ spectra at low temperatures ($60<T<400$ mK) and for this reason we tried to detect possible phase transitions in solid n-D$_2$ by studying the relaxation times.

The relaxation of the $J=1$ species is due to the modulation of the nuclear dipole and quadrupole interactions resulting from fluctuations of the molecular orientations. In the disordered phase the relaxation times $\tau_{1L}/13/ \propto \exp(\Delta/\lambda)$. The phase transitions are thus accompanied by abrupt changes in the temperature dependence of the τ_{1L}. The orientational degrees of freedom are in the also frozen quadrupolar glass phases at low X and dramatic changes in the temperature dependence of the relaxation time in solid H$_2$ are observed at the transition temperature /2/.

In solid D$_2$ the $I=2(J=0)$ spins relax much more slowly than the $I=1(J=1)$ spins /12/ and the observed relaxation of the $I=2$ spins in the disordered phase /13/ has been interpreted in terms of a cross-relaxation (τ_{12}) with the $I=1$ spins followed by the spin-lattice coupling of the latter. An abrupt change in the temperature dependence of the τ_{1L} at the transition should then be observable by studying the temperature dependence of the relaxation of the central part of the N.M.R. spectrum.

We have studied the relaxation times of solid n-D$_2$ for $60<T<500$ mK at 25 MHz. A typical recovery from partial saturation is shown in figure 1 where one can identify two distinct relaxation rates τ_s (short) and τ_L (long). At high temperatures $\tau_{1L}<\tau_{2L}<\tau_{12}$, the 2-bath model predicts $\tau_s = \tau_{1L}$ and $\tau_L \propto \tau_{12}/\mu$ where $\mu = \tau_{12}/\tau_{21} < 5$. At low temperatures one expects that $\tau_{12} < \tau_{1L} < \tau_{2L}$ and therefore $\tau_s \propto \tau_{12}$ and $\tau_L \propto \tau_{1L}/\mu$. The τ_s and τ_L obtained from these recoveries for several temperatures are shown in figure 2 and are consistent with this interpretation. There is a dramatic change in the temperature dependence of the relaxation rates at $T = 170$ mK similar to that observed in solid H$_2$ /1/.

These results provide indirect evidence for a possible transition to an ordered phase for $X=0.33$. We plan to extend these studies to higher para concentrations and in particular study the low temperature N.M.R. lineshapes near the critical concentration.
References