RESISTANCE MAXIMUM IN GOLD-COPPER ALLOYS WITH IRON IMPURITIES
J. Ray, Girish Chandra, A. Shaikh

To cite this version:
J. Ray, Girish Chandra, A. Shaikh. RESISTANCE MAXIMUM IN GOLD-COPPER ALLOYS WITH IRON IMPURITIES. Journal de Physique Colloques, 1978, 39 (C6), pp.C6-912-C6-913. <10.1051/jphyscol:19786405>. <jpa-00217875>

HAL Id: jpa-00217875
https://hal.archives-ouvertes.fr/jpa-00217875
Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
RESISTANCE MAXIMUM IN GOLD-COPPER ALLOYS WITH IRON IMPURITIES

J. Ray, Girish Chandra and A.W. Shaikh

Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay-400005, India.
† Physics Department, Indian Institute of Technology, Powai, Bombay-400076, India.

Abstract.- We have measured the electrical resistivity maximum in $\text{Au}_{1-x}\text{Cu}_x$ (x = 5, 10, 15 and 20 at.% with 0.1 at. % Fe impurities. This maximum lies between 2-4 K for the host alloys studied and indicates the coexistence of Kondo and spin glass effects in these systems.

1. INTRODUCTION.- The study of resistance maximum in a dilute magnetic alloy is a very important one, because it leads to our understanding of the nature of interactions between impurity local moments. Ternary alloys of Cu-Au(Fe) have been found to be interesting because these systems when cooled down to low temperatures (\textdegree{}K), the single impurity Kondo effect is greatly influenced by the impurity-impurity (RKKY) interactions giving rise to experimentally observed resistance maximum at a temperature T_{max}.

2. RESULTS.- In this paper we report the study of this resistance maximum on $\text{Au}_{1-x}\text{Cu}_x$ (x = 5, 10, 15 and 20 at.%) alloys with 0.1 at. % Fe impurities. While the earlier measurements /1/ were carried out on Cu rich hosts (x > 16 at. %), our studies are confined to the Au rich alloys. These alloys were studied in the form of foils, cold rolled to about 10 micron thickness, in a temperature range of 2-100 K. Temperatures were measured with a carbon resistor (calibrated from Cryo-Cal) with an accuracy of \pm 30 mK at the lowest temperatures studied. A dc constant current source (Keithley model 225), stable to about 1 part in 10^5 was used. Using the standard four probe technique, voltages were measured with a dc potentiometer. Figure 1 shows the result of our electrical resistivity measurements. The lattice resistivity in these plots have not been subtracted. Figure 2 shows the values of T_{max} obtained for the alloys studied, along with those of Star /1/. T_{max} decreases with increasing Cu concentration and within this narrow concentration range studied by us, our points roughly lie on a straight line with slope $\frac{dT_{\text{max}}}{dx} = -0.07$ K/at.%Cu. However, we know that such a simple variation of T_{max} with x is not of general validi-

3. DISCUSSION.- The understanding of this variation of T_{max} is rather difficult to explain quantitatively. It has been found from the studies by Loram et al. /3/ that adding Cu atoms to Au(Fe) alloys lead to an increase in T_K (Kondo temperature) all the way from 0.24 K for Au(Fe) to 24 K for Cu(Fe). An increase of T_K would imply an increase of the impurity-conduction electron spin coupling parameter J in RKKY based theories /4-6/ and this would consequently predict an increase of T_{max} with Cu concentration in Cu-Au(Fe) alloys. However, such theories are not found to be adequate to explain
the resistance maximum behaviour even in simple systems like Au(Fe).

![Graph](image)

Fig. 2: Temperature of resistivity maximum against Cu concentration for Al$_{1-x}$Cu$_x$(Fe) alloys. □: ref. /1/ ; △: present work; ○: T_{Max} against average volume normalized to pure Au from high pressure data on Au (0.13 at.%Fe) /7/.

A detailed calculation by Larsen /2/, taking both Kondo and RKKY interactions into account, have been able to show that there is no simple relationship between T_{Max} and J, but depends in a complex manner on both T_K and the mean RKKY interaction energy Δ_{RKKY}.

Apart from this magnetic impurity problem, possible local atomic clustering of Fe atoms with Cu in these ternary systems, makes the analysis even more difficult. Magnetization measurements /8/ on Cu(Fe) alloys with 100 ppm Fe impurities indicate the presence of giant moments, in addition to single and Fe-Fe pair moments and these clusters seem to persist /9/ even to the lowest temperatures of 0.012K so far studied.

We find that these metallurgical inhomogeneities enhances the residual resistivity in Al$_{1-x}$Cu$_x$ alloys very much, due to increase in defect scattering, and we find it to be about 4 $\mu\Omega$.cm as we go from Au to the Cu$_3$Au$_{95}$ alloy. Attempts are being made at present to understand these ternary alloys on the basis of Larsen's theory /2/ in a more accurate manner, taking these view points into account.

Acknowledgements.- The authors are thankful to Dr. T.E. Cranshaw, AERE, Harwell, U.K., for supplying these samples.