A SHELL MODEL OF POSITIVE IONS IN 3He-RICH LIQUID HELIUM
H. Namaizawa

To cite this version:

HAL Id: jpa-00217790
https://hal.archives-ouvertes.fr/jpa-00217790
Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A SHELL MODEL OF POSITIVE IONS IN 3He-RICH LIQUID HELIUM

H. Namaizawa

Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60201, U.S.A

and Institute of Physics, College of General Education, University of Tokyo, Komaba, Meguro-ku, Tokyo 153, Japan

Résumé.- Nous proposons un modèle de coquille pour ions positifs dans 3He dilué dans 4He liquide. En raison de leur masse plus grande, les atomes 4He forment une coquille complète autour de la boule de neige. En se basant sur ce modèle on peut donner une explication de la mobilité multiple des ions positifs récemment découverte dans 3He normal.

Abstract.—We propose a shell model for positive ions in 3He liquid containing dilute 4He. Due to their heavier mass 4He atoms should tend to form a closed shell structure around the snowball. Based on this model, an explanation is given for the recently discovered multiple positive-ionic mobility in normal 3He.

In pure helium the structure of a positive ion is conventionally understood in terms of a snowball, a compressed accumulation of helium atoms about the ion due to the electrostatic field /1,2/. When impurity 4He atoms are added to 3He liquid 4He atoms are attracted to the snowball by the sum of two independent potentials, the polarization potential from the ion (V_{pol}) and the excess Van der Waals potential due to increased density accumulation (V_{ex}):

$$V(r) = V_{pol}(r) + V_{ex}(r)$$

$$V_{pol}(r) = -\frac{ae^2}{2\epsilon\pi r^2}$$

$$V_{ex}(r) = \int \left| \frac{\epsilon}{\epsilon - 1} \right| (n(r') - n(\infty)) r'^2 dr'$$

In the above a and ϵ respectively stand for the atomic polarizability and the dielectric constant, and $\nu(r)$ is the helium-helium potential and $n(r)$ represents the number density function of liquid 3He.

The bound states of 4He atom are found by solving

$$\frac{d^2}{dr^2} + V(\nu)\psi(\nu) = \epsilon \psi(\nu)$$

where ν labels eigenstates. Since V has a strong attractive part, the low-lying bound states of (4) have well localized radial distributions so that the influence from the background 3He on the inerta, for example, is considered to be small.

It should be noted, however, that independently bound 4He atoms cannot reside in the pressure field produced by compressed 3He background near 4He.

Abstract.—We propose a shell model for positive ions in 3He liquid containing dilute 4He. Due to their heavier mass 4He atoms should tend to form a closed shell structure around the snowball. Based on this model, an explanation is given for the recently discovered multiple positive-ionic mobility in normal 3He.
of the bare snowball. As for the helium interatomic potential the conventional Lennard-Jones form is applied, and the eigenvalue problem (4) is solved numerically. The snowball radius and the pressure profile are calculated as functions of the external pressure P_m according to the prescription presented in references /1,2/. For $P_m=0$ and 5 atm there are four bound states of angular momentum $\ell = 0, 1, 2, 3$ having no nodes in radial wave functions. We have chosen r_M of a bound shell to be the peak position of the corresponding radial wave function of the atomic bound state. Since the origin of resistance against the pressure field is the atomic hard-core, the effective thickness of 4He shell can roughly be given by the radius of the core $\varphi=2.2\text{Å}$. Then r_A and r_B are determined respectively by

$$r_{A,B} = r_M \pm \frac{d}{2}$$

Calculating spreading pressure ϕ_{um} from (5), an estimate of the equilibrium densities σ_{um} is done by reading the ϕ vs. σ relation obtained from the results of reference /3/. These are given in table I together with ϕ_{um}, r_A, r_B, r_M^2/r_S^2, and the number of bound 4He atoms, $N_{4m}=4\pi r_M^2 \sigma_{um}$. Notice that the bare snowball radius r_S is 6.22 and 6.46Å at $P_m=0$ and 5 atm respectively.

Table I

<table>
<thead>
<tr>
<th>Bound State</th>
<th>P_m (atm)</th>
<th>ℓ</th>
<th>e (K)</th>
<th>r_A (Å)</th>
<th>r_B (Å)</th>
<th>r_M^2/r_S^2</th>
<th>ϕ_{um} (dyn cm$^{-1}$)</th>
<th>σ_m (Å$^{-2}$)</th>
<th>N_{4m}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ell=0$</td>
<td>0</td>
<td>0</td>
<td>-0.769</td>
<td>8.90</td>
<td>11.10</td>
<td>2.58</td>
<td>0.202</td>
<td>0.0605</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>-0.575</td>
<td>9.36</td>
<td>11.56</td>
<td>2.62</td>
<td>0.177</td>
<td>0.0590</td>
<td>81</td>
</tr>
<tr>
<td>$\ell=1$</td>
<td>0</td>
<td>1</td>
<td>-0.663</td>
<td>8.98</td>
<td>11.18</td>
<td>2.63</td>
<td>0.193</td>
<td>0.0600</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>-0.482</td>
<td>9.46</td>
<td>11.66</td>
<td>2.67</td>
<td>0.170</td>
<td>0.0587</td>
<td>82</td>
</tr>
<tr>
<td>$\ell=2$</td>
<td>0</td>
<td>2</td>
<td>-0.456</td>
<td>9.08</td>
<td>11.28</td>
<td>2.68</td>
<td>0.183</td>
<td>0.0595</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2</td>
<td>-0.297</td>
<td>9.63</td>
<td>11.83</td>
<td>2.76</td>
<td>0.153</td>
<td>0.0578</td>
<td>84</td>
</tr>
<tr>
<td>$\ell=3$</td>
<td>0</td>
<td>3</td>
<td>-0.161</td>
<td>9.30</td>
<td>11.50</td>
<td>2.80</td>
<td>0.167</td>
<td>0.0586</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3</td>
<td>-0.041</td>
<td>10.02</td>
<td>12.22</td>
<td>2.96</td>
<td>0.133</td>
<td>0.0563</td>
<td>87</td>
</tr>
</tbody>
</table>

The present results predict distinct shell structures of positive ions in 3He-rich liquid helium. The recent experiments /5,6/ on mobility show a hierarchy of discrete positive-ionic structures which can be interpreted by the present model. The detailed comparison with experiment will be discussed together with the self-consistent treatment of the thermal equilibrium of the bound 4He shell.

References

/1/ Atkins, K.R., Phys. Rev. 116 (1959) 1339

/6/ Roach, P.R., Ketterson, J.B., Roach, P.D., to be published.