SURFACE INDUCED FERROMAGNETISM IN 3He

A. Ahnonen, T. Alvesalo, T. Haavasoja, M. Veuro

To cite this version:

HAL Id: jpa-00217532
https://hal.archives-ouvertes.fr/jpa-00217532
Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SURFACE INDUCED FERROMAGNETISM IN ^3He

A.I. Ahnonen*, T.A. Alvesalo, T. Haavasoja, and M.C. Veuro

Low Temperature Laboratory, Helsinki University of Technology, SF-02150 Espoo 15, Finland

Abstract.- Pulsed NMR measurements of the susceptibility and of the transverse and longitudinal relaxation times of ^3He intermixed with 9 nm carbon particles down to 0.4 mK show that the solid-liquid system near the surfaces favours ferromagnetic order below 10 mK and approaches a ferromagnetic transition at the lowest temperatures.

Recent measurements on ^3He at millidegree temperatures inside a stack of mylar plates 4 μm apart /1/ and intermixed with ultrafine carbon particles /2/ showed a pronounced enhancement of the susceptibility as compared with that of normal bulk Fermi-liquid. The excess susceptibility exhibited a ferromagnetic Curie-Weiss behaviour $\chi = 1/(T - \theta)$ with θ roughly 0.7 mK. We report here pulsed NMR measurements on ^3He intermixed with 9 nm carbon particles at 0, 6, 15 and 25 bar bulk pressure well below that temperature as well as above the onset of the ferromagnetic trend of the susceptibility. The apparent transverse relaxation time T_2^* was also determined at the various pressures; the longitudinal relaxation time T_1 was measured only at 0 bar. All measurements were performed in a magnetic field of 28 mT.

Our sample consisted of a cylindrical NMR coil, 5 mm in diameter and 6 mm long, filled to 6% with carbon black /3/. The characteristic surface area of the carbon powder was measured with the BET-method to be 350 m2/g yielding for the total surface area of our sample 4.9 m2. The temperatures were determined by measuring the susceptibility of powdered platinum confined in a similar coil and in contact with the ^3He sample; the Korringa relation was employed for calibration of the thermometer.

The amplitude of the free induction signal, extrapolated to time $t = 0$, is proportional to the susceptibility of the sample. The measured signals appeared to be composed of two contributions, one decaying much slower ($T_2^* = 40 \mu$s) than the other ($T_2 = 400 \mu$s). We call the extrapolated quantities χ_1 and χ_2, respectively.

Our data on χ_2 show no pressure dependence within the scatter and susceptibility follows a Curie-Weiss law $\theta = -0.09$ mK. This is in accordance with an antiferromagnetic interaction with $J/k_B = \frac{1}{2} \theta = -0.06$ mK if we use $z = 6$ as the number of nearest neighbours. Bulk solid ^3He ordinarily exhibits an antiferromagnetic exchange interaction; the measured J would correspond to a molar volume of 21 cm3/mole for solid ^3He. The antiferromagnetic nature of the signal, its insensitivity to the applied pressure, and its short and constant T_2^* suggest that χ_2 is associated with a well-localized sheet of ^3He atoms on the surfaces. We estimate the thickness of the layer to be ≈ 1.2 atomic layers.

Figure 1 shows the inverse of the major contribution, χ_1, as a function of temperature at $p = 0$. Assuming that χ_1 originates from the next few surface layers, with a density $\rho > \rho_{\text{bulk}}$ and a Curie-Weiss type susceptibility, and from the Fermi-liquid in the centre of the voids, we may write:

$$\chi_1 = c_1 \frac{1}{T - \theta} + c_2,$$

where c_1 and c_2 are constants. The bulk liquid contribution can be separated by plotting χ_1 vs. T^{-1}. The c_2's at different pressures scale within ± 20% as the susceptibilities of bulk liquid ^3He. In terms of the above model ($\chi_1 - c_1$) is ferromagnetic and weakly pressure dependent; the 0's range from 0.35 to 0.50 mK. The ratios of ($\chi_1 - c_1$) 's and c_2's yield for the thickness of the intermediate solid liquid region 4.5 - 5.5 atomic layers. The deviation of the temperature dependence of

* Present address : Department of Physics, Cornell University, Ithaca, New York 14853, USA
from the Curie-Weiss law already at approximately 20 mK may reflect the two-dimensional nature of the system.

![Fig. 1: The inverse susceptibility χ^{-1} as a function of temperature at $p = 0$.](image1)

The resemblance of the data in figure 1 to the solid 3He susceptibility data of Prewitt and Goodkind /4/ suggests another way of interpreting our data. If we assume that at temperatures between 10 and 20 mK the antiferromagnetic susceptibility dominates and fit those data to the first term in eq. (1), we obtain $0 = -2.6 \ldots -2.8$ mK at the different pressures. In this case, within the scatter of our data, the "excess" susceptibility appears to be proportional to T^{-2}.

Our data on the apparent transverse relaxation time τ^*_{2} are shown in figure 2. τ^*_{2} is seen to be linear, slowly declining function of temperature down to ≈ 10 mK. At about 5 mK it becomes constant and then grows rapidly towards the lowest temperatures. This is characteristic of a ferromagnet close to the transition /5/.

Of the suggestions for explaining the observed ferromagnetic behaviour in the solid-liquid system of 3He /6/, /7/, /8/, we consider the theory of vacancy induced ferromagnetism as the most appealing one. The onset temperature of the ferromagnetic trend in the susceptibility of both low-density solid and solid-liquid 3He (we note in passing that it coincides with the inflection point of the melting curve) and of the anomalous Kapitza resistance $P_{\kappa} = T^{-1}$ below ≈ 10 mK seems to indicate that these two phenomena are related and their common origin may be established within the framework of the vacancy theory.

![Fig. 2: The apparent transverse relaxation time τ^*_{2} as a function of temperature at 0, 6, 15, and 25 bar.](image2)

References

/3/ Ahonen, A.I., Gully, W.J., Lounasmaa, O.V., and Veuro, M.C., paper XXX in these proceedings.

