NUCLEAR SPIN RELAXATION AND ATOMIC MOTION OF 3He ADSORBED ON GRAFOIL
K. Satō, T. Sugawara

To cite this version:
K. Satō, T. Sugawara. NUCLEAR SPIN RELAXATION AND ATOMIC MOTION OF 3He ADSORBED ON GRAFOIL. Journal de Physique Colloques, 1978, 39 (C6), pp.C6-281-C6-282. <10.1051/jphyscol:19786125>. <jpa-00217530>

HAL Id: jpa-00217530
https://hal.archives-ouvertes.fr/jpa-00217530
Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
NUCLEAR SPIN RELAXATION AND ATOMIC MOTION OF 3He ADSORBED ON GRAFOIL

K. Satō and T. Sugawara
Institute for Solid State Physics, University of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan.

Résumé.- Les temps de relaxation de spin nucléaire, T_1 et T_2, de 3He adsorbé sur du Grafoil ont été mesurés. Les mécanismes de la relaxation ont été discutés en termes du mouvement des atomes à deux dimensions.

Abstract.—Measurements of the nuclear spin relaxation times, T_1 and T_2, have been made on 3He films adsorbed on Grafoil. From the results the relaxation mechanisms are discussed in terms of the two-dimensional atomic motion.

The aim of this paper is to obtain microscopic information of the atomic motion in 3He films adsorbed on Grafoil by spin-echo NMR experiments. The longitudinal and transverse relaxation times, T_1 and T_2, of 3He were measured at 10 MHz as functions of temperature T, the fractional coverage X, and the angle θ between the external field direction and the surface of the Grafoil. Typical experimental results are illustrated in figures 1 and 2.

Fig. 1: T_1 as a function of the fractional coverage for various temperatures.

In the following the data for three different regions of X are discussed separately.

Fig. 2: T_2 as a function of the fractional coverage for various temperatures.

LOW COVERAGES, $X \leq 0.5$.

According to the specific heat results, the system behaves as quantum gas. In this region T_1 does not vary with θ, whereas T_2 increases as θ is increased from 0° to 90°. These θ-dependences and the data shown in figures 1 and 2 suggest that the dipole-dipole interaction between 3He nuclei does not give rise to the principal mechanism for T_1 and T_2. The most probable relaxation mechanism concluded from examination of various models is: T_1 is determined by collision of 3He atoms with solids at the...
grain boundaries in Grafoil where T_1 is limited by interaction with magnetic impurities adsorbed at the boundaries, T_2 is determined by diffusion of 3He spins in the magnetic field gradient due to irregular orientation of the graphite grains.

INTERMEDIATE COVERAGES, $0.5 \leq X \leq 0.7$.

This region is characterized by the ordered lattice gas phase which appears below 3 K in a narrow interval of X centered at about $X = 0.60$ /1/. The observed ϕ-dependences of T_1 and T_2 are similar to those for $X \leq 0.5$. The temperature variation of T_1 can be explained by assuming a mechanism similar to that for $X \geq 0.7$, i.e., the motion of vacancies modulates the 3He dipolar interaction. The formation energy ϕ and the jumping frequency ω_0 of these vacancies for $X = 0.58$ are found as $3.8 K$ and 5.6×10^{13} s$^{-1}$, respectively. This value of ϕ remains constant between $X = 0.52$ and 0.60. As shown in Figure 2, there is a dip at about $X = 0.58$ in the T_2 vs X curve below 3 K. Since T_2 for $0.5 \leq X \leq 0.7$ is explained by the same mechanism as that for $X \leq 0.5$, the dip can be attributed to a decrease of the mobility (i.e., the diffusion coefficient D) of 3He atom at $X = 0.58$. This seems to be associated with the formation of the ordered gas phase.

HIGH COVERAGES, $0.7 \leq X \leq 1.0$.

According to the specific heat studies, /1/ the two-dimensional solid exists above the melting line shown in Figure 3. The temperature variation of T_1 in the high concentration region is explained by vacancy modulation of the dipole-dipole interaction between 3He nuclei, the same mechanism as that for bulk solid 3He /2/. The value of ϕ obtained from T_1 data has the same order of magnitude as that of bulk solid 3He and increases as $\exp(X \uparrow)$ up to $X \approx 1.0$ where it decreases abruptly. The minimum values of T_1 (c.f. Figure 1) are in agreement with those expected from the BPP theory for two-dimensional system. Since ω_0 should be equal to unity at the minimum, the line $T_1\left(\min\right)$ in Figure 3 is equivalent to the line for $\tau_1 = 1.6 \times 10^{-8}$ s. No discontinuous change in NMR is observed at the melting point in contrast to bulk solid 3He.

![Fig. 3: Phase diagram for high coverages.](image)

The results presented here are in agreement with those of Cowan et al /3/ obtained at lower frequencies. Details of this work will be published shortly, including the results on multilayer films not discussed here.

References

