INTERDIFFUSION IN COMPOSITION MODULATED COPPER-NICKEL THIN FILMS
T. Tsakalakos, J. Hilliard

To cite this version:
T. Tsakalakos, J. Hilliard. INTERDIFFUSION IN COMPOSITION MODULATED COPPER-NICKEL THIN FILMS. Journal de Physique Colloques, 1977, 38 (C7), pp.C7-404-C7-405. <10.1051/jphyscol:1977781>. <jpa-00217284>

HAL Id: jpa-00217284
https://hal.archives-ouvertes.fr/jpa-00217284
Submitted on 1 Jan 1977

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
INTERDIFFUSION IN COMPOSITION MODULATED COPPER-NICKEL THIN FILMS

T. TSAKALAKOS (*) and J. E. HILLIARD

Materials Research Center, Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60201, U.S.A.

Résumé. — Les coefficients d'interdiffusion ont été mesurés dans les couches minces de Cu-Ni déposées sous vide à partir de la phase vapeur, chaque couche contenant une modulation de composition dans la direction [111] de longueur d'onde comprise entre 0,8 et 5 nm. Les coefficients d'interdiffusion dans le domaine 375-450 °C, mesurés par rayons X à partir de la diminution d'intensité des pies satellites, sont en bon accord avec une extrapolation des données existantes à haute température obtenues sur des échantillons conventionnels. Le coefficient de diffusion effec tif \(D_b \) à 400 °C présente un minimum en fonction de la relation de dispersion \(B^2(h) \), contrastant ainsi avec le comportement de plusieurs autres systèmes étudiés jusqu'à présent. Une nouvelle formulation de \(D_b \) décomposé en puissances de \(B^2 \), a été développée et six potentiels interatomiques ont été calculés à partir des paramètres d'ordre à courte distance : ce calcul fournit un minimum de \(D_b \) à environ 1,6 nm qui est la valeur observée expérimentalement. Des singularités d'écragement sont révélées sur la courbe \(D_b - B^2 \) par l'apparition d'un pic abrupt à la longueur d'onde 2,5 nm.

Abstract. — Interdiffusivities were measured in vapor-deposited Cu-Ni foils containing [111] composition modulations with wavelengths between 0.8 and 5 nm. The interdiffusivities in the range of 375-450 °C, measured from the decay rate of X-ray diffraction satellite intensities, were in good agreement with an extrapolation of existing high temperature data obtained with conventional diffusion specimens. The effective diffusion coefficient \(D_b \) at 400 °C as a function of the dispersion relation \(B^2(h) \) showed a minimum, in contrast with the behavior of several other systems investigated so far. A new formulation of \(D_b \) in powers of \(B^2 \) was developed and six interatomic potentials were calculated from short range order parameters which yielded a minimum in \(D_b \) at approximately 1.6 nm as was observed experimentally. Screening singularities showed up in the \(D_b - B^2 \) by the appearance of a sharp peak at a wavelength 2.5 nm.

Introduction. — According to the linearized treatment of diffusion the amplitude, \(A(t) \), of a composition modulation defined by the wavevector :

\[
k = h_1 \mathbf{b}_1 + h_2 \mathbf{b}_2 + h_3 \mathbf{b}_3,
\]

will vary with time, \(t \), according to :

\[
A(t) = A(0) \exp[-\alpha(h) t],
\]

(1)

where \(\alpha(h) \) is an amplification factor defined by :

\[
\alpha(h) = B^2(h) \bar{D}_b,
\]

(2)

in which \(B^2(h) \) is the dispersion relationship :

\[
B^2(h) = \frac{1}{a^2} \sum_{\mathbf{r}} \left[1 - \cos \mathbf{k}(h).\mathbf{x}(\mathbf{r}) \right],
\]

(3)

in which \(a \) is the lattice parameter and the summation is over the nearest neighbor sites to the origin. The quantity \(\bar{D}_b \) is an interdiffusion coefficient which, in a derivation to be published elsewhere, can be related to the diffusion coefficient, \(D \), measured in a macroscopic couple by :

\[
\bar{D}_b = \bar{D} \left[1 + \omega + (2f^\prime) \sum_{m=1}^\infty K_m B^{2m}(h) \right],
\]

(4)

where \(f^\prime \) is the second derivative with respect to composition of the Helmholtz free energy per unit volume, \(\omega \) is a coherency strain term [1] which depends on the elastic constants and the variation of lattice parameter with composition and the \(K \)'s are gradient-energy coefficients. Eq. (4) is a generalization of an expression [2] which included only the first term in the summation and this, in turn, was a generalization of a continuum model developed by Cahn [1] that is valid for the limit \(B^2(h) \rightarrow 0 \). Expressions for the \(K \)'s in terms of the interatomic potentials have been derived for the [111] and [100] directions in a f.c.c. lattice.

Experimental procedure and results. — Composition modulated Cu-Ni foils were prepared by co-evaporating the two components through a rotating
pinwheel shutter onto a mica substrate; details of the technique have been given elsewhere [3]. The foils had a strong [111] texture and the modulations were coherent. The wavelength (0.8-5 nm) and amplitude of the modulations were determined from the location and intensity \(I \) of the satellites about the 111 Bragg peak. The diffusivity \(D_B \) was estimated from the terminal slope of a plot of \(\ln \left(\frac{I(t)}{I(0)} \right) \) versus isothermal annealing time.

The variation of \(D_B \) with \(B^2(h) \) is shown in figure 1. It will be noted that the dependence is strongly non-linear indicating that the higher-order terms in Eq. (4) are significant. We believe that the strong peak at a wavelength of \(\sim 2.5 \) nm is not due to the gradient-energy coefficients but instead is a result of a large increase in the elastic modulus that we have observed (and will be reporting elsewhere) in composition modulated Cu-Ni foils having wavelengths \(\lessapprox 2.5 \) nm. The increase in the modulus increases the coherency-strain term \(\omega \) in Eq. (4) and hence the value of \(D_B \). An increase in elastic modulus has also been observed [4] in Au-Ni and Cu-Pd composition modulated foils and we believe that the effect is due to change in the band structure resulting from the introduction of a new Brillouin zone.

As previously noted, the \(K \)'s can be related to the interatomic potentials. The first six of these were calculated from short-range order parameters determined by Vrijen, van Dijk and Radelaar [5]. The values derived for \(K_1, K_2 \) and \(K_3 \) agreed with the observed ones in respect to sign but were smaller by approximately an order of magnitude. There was a corresponding discrepancy in the values of \(D_B \) calculated from Eq. (4) but they did exhibit a minimum at about the same wavelength as the experimental values plotted in figure 1. The differences between the observed and calculated quantities are probably due to the omission of higher-order interatomic potentials since these are heavily weighted in the expressions for the \(K \)'s.

The results described here for the Cu-Ni system differ from those so far observed in other systems in two respects, both of which are related to the long-range interactions in Cu-Ni. First, in all systems so far studied \(K_1 \) has the same sign as the heat of mixing whereas in Cu-Ni it is of opposite sign. Secondly, in measurements of \(D_B \) in Au-Ag [3] and Cu-Pd [6] composition modulated foils the data could be adequately fitted using only the first term of the summation in Eq. (4).

Acknowledgments. — This research was supported by the National Science Foundation through the Northwestern University Materials Research Center.

Fig. 1. — Diffusivities \(D_B \) versus \(B^2 \) for 50 at. pct. Cu-Ni foils at 400 °C.

References