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CONDITIONS FOR THE EXISTENCE OF ORDERED STRUCTURE 
IN BINARY ALLOY SYSTEMS 

J. KANAMORI and Y. KAKEHASHI 

Department of Physics, Osaka University, Toyonaka 560, Japan 

R6sum6. - Nous discutons les conditions &existence de surstructures dans le cas Calliages 
binaires cfc par la dktermination de 1'Ctat fondamental pour une concentration arbitraire dans un 
modkle d'interaction de paires. Nous supposons que l'interaction s'ktend jusqu'aux quatritmes 
voisins. Plusieurs Ctats ordonnts typiques sont obtenus comme ttats fondamentaux. L'analyse est 
combink avec un calcul de l'interaction entre deux atomes d'eltment de transition pour expliquer 
une tendance g6nCrale observke dans le cas des alliages des mktaux de transition. 

Abstract. - The conditions for the existence of superlattice structures of fcc binary alloys are 
discussed by determining the ground state of the pairwise interaction model for arbitrary concen- 
tration. The interaction is assumed to extend to the fourth neighboring sites. Many typical ordered 
structures are obtained as the ground state. The analysis is combined with a calculation of the interac- 
tion between two transition element atoms to explain a general tendency observed in transition 
metal alloys. 

1. Introduction. - Many ordered states of binary 
alloys or vacancies correspond to superlattice struc- 
tures on the bcc, fcc and hcp lattices. Certain types 
of such orderings belonging to the same lattice appear 
quite often successively in a concentration range 
of a binary alloy system. In order to elucidate the 
conditions for the appearance of such a sequence 
of orderings, we determine the ground state of the 
lattice gas model with the pairwise interaction of 
finite but extended range. The lattice distortion 
accompanying the ordering is neglected in the ana- 
lysis. We present in sections 2 through 4 the result 
of a detailed analysis of the fcc lattice case with up 
to fourth neighbor interactions in which the first 
neighbor one is sufficiently repulsive to keep the 
number of the nearest neighboring pairs of particles 
minimum for a given concentration. The bcc and 
hcp lattice cases will be briefly discussed in section 5. 

The present problem has been discussed by many 
.. auth0rs.w-far: The dis~tssions; however, .have been 

confined mostly to the cases of the first and second 
neighbor interactions only; some arguments which 
include the third neighbor interaction seem to lack 
mathematical rigor. As will be discussed below, 
the inclusion of the fourth neighbor interaction 
is essential for obtaining many interesting ordered 
structures of the fcc case as the unique ground state 
of the model. In the analysis we use the method of 
geometrical inequalities which is capable of deter- 
mining the ground state in the whole concentration 
range ; the method has been developed by Kaburagi 
and Kanamori [I-31. 

In section 6 we discuss a general tendency in fcc 
transition metal alloys. We mention briefly a cal- 

culation of the electronic contribution to the pairwise 
interaction between two transition element atoms ; 
when combined with the analysis of the lattice gas 
model, it will explain certain aspects of the observed 
tendency. 

2. Definitions and the method of analysis. - The 
energy of the present model is defined by 

where Vk is the interaction constant of the k-th neigh- 
bor interaction and pk is the total number of the 
k-th neighboring pairs of particles in a given configu- 
ration. The particles correspond to atoms. of minority 
component of binary alloys, since the concentration x 
will be confined to the range x 5 112. The total energy 
of an alloy A,B,-, can be reduced to E given by 
Eq. (1) if we drop a term depending on x only; Vk 
is given by. . , - . . .  , .. 

in terms of the interaction constants between A-A, 
B-B and A-B pairs. In order to denote a structure 
at a concentration x, we use the symbol 

where N is the total number of the lattice sites and 
thus pk/Nx gives the number of the k-th pair per 
particle. The symbol may not define the structure 
uniquely in some cases; such a degeneracy will be 
mentioned in each case. 

When the interaction is of finite range, the ground 
state energy, E,, follows a broken line as function 
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of x, changing the slope dEg/dx at several characte- 
ristic values of x. At the inflection point the ground 
state is an ordered structure, while ,it is generally 
a two-phase mixture of the ordered structures corres- 
ponding to near-by inflection points at an interme- 
diate x, though an ordered structure may happen 
to be degenerate with the two-phase mixture in some 
cases. This E, vs. x relation of the lattice gas model 
was rigorously derived first by the method of geo- 
metrical inequalities [I]. We summarize the method 
by explaining the analysis for the case of the fcc 
lattice with V, and V2 only. w e  can derive the follow- 
ing inequalities for p ,  and p2 [3] : 

A = p ,  2 0  for x s  114, 
N ( 4 x -  1) for 1 1 4 5 ~ s  112, 

B = 2 p 1  + p 2 2 0  for x s 1 / 6 ,  
N(6 x - 1) for 116 5 x $ 113 , 
N(12x - 3) for 113 5 x 2 112, 
C = p 2  2 0 for x 5 112, 

D =  - p i  + p 2 z  - 3 ~  
and 

F =  - p 2  2 - 3 x .  (2) 

Note that the r.h.s. for A,  Band C have the inflection 
points. We rewrite the energy given by Eq. (1) in 
terms of the l.h.s., for example, as 

which determines E, in the regime Vl > 2 V2 > 0 
provided that we can find the ordered structures 
satisfying the equality at the inflection points of the 
inequalities used in rewriting of E. In the present 
case we can determine the ground state in the whole 
regimes of the V, - V2 plane, concluding that it 
is divided into five regimes, 

(I) V ,  > 0 and V2 < 0, 
(11) V' > 2 v2 > 0 , 

(111) 2 v2 > v, > 0 , 
(IV) 0 > V, > - V2 and (V) - V2 > V, 

See table I for the result. 
In the regimes (I) and (11), where p,  is minimum, 

we find the wellknown Cu,Au, A1,Ti Pt2Mo and 
CuAuI types among the ordered structures appearing 
at the inflection. As was pointed out by Allen and 
Cahn [4] who derived most of the result indepen- 
dently by use of a different method, the Ni,Mo type 
is degenerate with the two phase mixture at x = 115 
between S(0, 0,4, 1 ; 116) and S(O,2,4,2 ; 114) (A1,Ti) 
as far as V, and V2 are concerned. Also complicate 
structures such as Au,Mn,, Pd2Mn and Pd,Mn, 
are not obtained as the distinct structures at the inflec- 
tion of the E, vs. x curve, though p, is kept minimum 
in these structures. The inclusion of V3 in the analysis 
does not improve the situation very much. Thus we 

extend the range of interaction to the fourth neigh- 
bors. In order to simplify the analysis, we assume 
that p, is kept minimum for given concentrations, 
satisfying the equality in the inequality A in Eqs. (2). 
The structures which lie outside the scope of the 
analysis in the following section are the CuPt family 
in the regimes (111) and (IV) where p2 is mini- 
mum [5] ('). We defer the analysis for this case to 
future publication. 

The ordered structures in the fcc case with V, and 
V2 only. The regimes, I, II, etc. are defined in the text. 
The number given in bold-face refers to the unit cell 
shown in figure 1. Only those which appear at the 
inflection points of the Eg vs. x curve are listed. 

Structure Reg. Structure Reg. 
- - - - 

~ ( 0 , 3 , 0 , 6  ; 114) 17 I S(0,2,4,2 ; 114) 18 I1 
S(2,3,4,6;1/2) 39 I S(1,1,6,1;1/3) 23,24 
S(0,0,4,1 ; 116) 1 I ,  I ( 1 1 6  3 ; 1 3  25 

I1 

S(3/2.0,5,7/2 ; 113) 42 I11 S(2,2,8,2 ; 112) 40 I1 
S(3,0,6,6 ; 112) 44 111, IV No structure in V. 

3. The fcc lattice with up to V,  and minimum p,. - 
When we include p3 and p, in the analysis, we 
encounter in some cases the difficulty that we cannot 
find the ordered structure satisfying the equality 
in the relevant inequalities. We can overcome the 
difficulty in most cases of the present analysis by 
improving the inequalities by use of an argument 
utilizing the minimum p1 condition. All the structures 
listed in table I1 can be proved to be of lowest energy 
in certain regimes in the space spanned by the inter- 
action constants. There are, however, certain regimes 
in which we cannot determine the E, vs.x curve 
rigorously. In such regimes we make conjecture by 
assuming that the ordered structures proved rigo- 
rously h' adjacent regimes may appear in the regime 
in point and determine the state of lowest energy 
by energy comparison. Though we shall not specify 
the regimes in which such a conjecture is made in this 
paper, we mention that we encounter the problem 
mostly in the hatched region in figures 2 and 3. 

Table I1 and figures 1-4 summarize the result of 
the analysis. Under the minimum p ,  condition x = 1 /4 
and 112 are always the inflection points according to 
the inequality A in Eq. (1). Defining [ by 

we can prove rigorously that S(0, 2,4, 2 ; 114) (A1,Ti) 
and S(2, 2, 8, 2 ; 112) are the corresponding ordered 

(I) The CuPt, structure is obtained in the present analysis, 
since p, = 0 is satisfied. If p, is minimum under the minimum p, 
condition, we obtain CuPt, (No. 8) and Nos. 11, 41, 42, 43, 44 in 
figure 1. 



'27-276 J. KANAMORI AND Y.  KAKEHASHI 

FIG. 1. - Unit cells of the fcc ordered structures projected on the 
(001) plane. Large circles are the sites on the (OOn) planes with 
integral n and small ones are those on the (OOn + 112) planes. 
Circles with a shaded quadrant correspond to particles occupying 
etcry fourth sites in the [OOl] direction. Particles on the planes with 
z = 4 n, 4 rt t l / 2 ,  4 n + 1 ,  ... are distinguished by rotating 
clockwise the shaded quadrant by 450, 900, .... The circles with 
a shaded 12W sector represent particles on every third sites slml- 
larly. For half-shaded circles we do not rotate the shaded part 
by 900 between large and small circles for simplicity. Figures 
Nos. 1-40 belong to the case of minimump,. Nos. 41-44 are examples 
of the CuPt family. No. 15 is Ni,Mo, 17 Cu,Au, 18 Al,Ti, 
19 Au,Mn,, 24 Pt,Mo, 28 Pd,Mn (shown in figure S), 39 CuAuI. 
No. 23 has the samc p,'s up to k = 4 as Pi,Mo. The arrow in 
No. 35 means that the particle can be shifted with no cost of energy. 

structures for the case ( > 0 and S(0, 3, 0, 6 ; 114) 
(Cu3Au) and S(2, 3, 4, 6 ; 112) (CuAuI) for the case 
5 < 0. For other values of x we obtain many ordered 
structures which we divide into four groups : 1) the 
A1,Ti family appearing mostly in the region ( > 0 of 
the V2-V3 plane and satisfying the condition that 
p ,  is minimum under the minimum p, condition, 
2) the Cu3Au family appearing mostly in the region 
5 < 0 and satisfying the condition that p3 is minimum 
under the minimum p ,  condition, 3) intermediate 
structures appearing in the hatched region of figures 2 
and 3, and 4) structures satisfying p, = p,  = 0 

such as CuPt, and appearing in both 5 > 0 and t < 0 
with x 5 118. 

In order to illustrate the analysis we mention 
the inequality, 

which is valid under the minimum p, condition. 
In the 1.h.s. the first expression is applicable to 
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TABLE IIa TABLE IIb 

The ordered structure in the case of V4 > 0 and 
x 2 114. See figure 2 for the regimes. Each structure 
can exist in a regime in the hatched region besides 
in those marked with circle. 

Group 1 AI,Ti family I I1 I11 IV V 

Group 2  Cu3Au family VI VII VIII IX X 

Group 3  The regimes are in the hatched region 
- 

S(1 ,  312, 1112, 1 ; 113) 26, 27 S(8/5,9/5,32/5,8/5 ; 5/12) 35 
S ( 1 , 2 , 4 , 2 ;  113) 21 S(8/5,2,28/5,2 ; 5/12) 34 
S ( 1 , 2 , 3 , 3 ;  113) 28 (*) S(5 /3 ,2 ,16 /3 ,8 /3  ; 317) 36 

(*) See figure 5. S(9 /5 ,2 ,6 ,14 /5  ; 511 1) 38 

FI G.  2. - The regimes in the case of V ,  > 0  and x 2 114 (see 
table IIa). 

I I m 

F I G .  3. - The case of V ,  > 0  and x < 114. 

The case of V4 > 0 and x t 114. See figure 3. 
No ordered structure appears in the regimes I and VIII 
which coincide with Z and X in jigure 2 for x 2 114. 
All the structures except S(0,  0 ,  3,O ; 118) 7 appear 
in certain regimes in the hatched region. We have found 
two structures belonging to the group 3, S(0,  1,2, 1 ; 116) 
12 and S(0,  2, 1, 3 ; 115) 16 which appear in a part of 
the hatched region only. We have three structures of 
the group 4 : S(0,  0, 0 ,  0 ; 2/27) 1 in the regimes VZ 
through X V, S(0,  0, 0, 1 ; 1/12) 2 in VZZI through XII 
andS(0, O,0,6 ; 118) 8 (Pt,Cu) in IXand X. 

Group I A13Ti family I1 I11 IV V VI VII VIII 1X 
- - - - - - - - - 

S(O,O, 1 /2 ,0 ;  1/12) 3 0 0  
S(0,O. 5 /2 ,0  ; 118) 6 0  0  
S(O, 0 , 2 , 1  ; 118) 10 0  
S ( 0 , 0 , 3 , 0 ; 1 / 8 )  7 0 0  
S ( 0 , 0 , 4 , 1 ; 1 / 6 )  11 0  0  0 0 0  
S ( 0 , 1 , 4 , 0 ; 1 / 5 )  1 5 0  0  0 0  0  0  0  0 

Group2Cu3Aufamily X XI XI1 XI11 XIV XV XVI XVII 
- - - - - - - - 

S(O,l ,O,O; 119) 4,  5 0 0 0 0 0 0  
S ( 0 1 0 1 ; 1 / 8 )  9 0 0  0 0 
S ( 0 , 2 , 0 , 2  ; 116) 13 0 0 0 0 0 0 0  
S ( 0 , 2 , 0 , 4 ; 3 / 1 6 )  14 0 0  0  0  

The case of V ,  < 0. See figure 4. S(0,  0, 4, 1 ; 116) 
extends to the regime IV  as far as 

and S(1 ,  1, 6 ,  312 ; 113) to the regime IV as far as 
5 V2 - 16 V-3 + 18 V4 2 0 .  

Structure I I1 I11 111' IV V 
- - - - - - -  

S(0,  0 ,  0 , 6  ; 118) 8 0 0 0  
S(O,O, 4,1 ; 1/61 11 0  0  
S(O,2,4,2 ; 1/41 1 8 0 0 0 0  
S(1 ,1 ,6 .312;  113) 25 0  0  
S(4/3,4/3,  16/3,10/3 ; 318) 31 0  0  
S(2 ,2 ,8 ,2  ; 112) 4 0 0 0 0 0  
S ( 0 , 3 , 0 , 6 ;  114) 17 0  0  
S(4 /3 ,2 ,8 /3 ,6  ; 3/81 30 0  

FIG. 4. - - -  Thc case of V ,  < 0 .  

19 
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115 i x S 114, the next one up to x = 217 and so 
on with the inflection points at x = 115, 114, 217, 
113, 215, 511 1 and 112. This inequality is used in the 
regime (IV) of figure 2 to conclude the sequence, 
Ni4Mo, A13Ti, Au5Mn2, Pt2Mo and 

there. x = 5/11 is not the inflection point, because 
another inequality takes over in 215 5 x 5 112. 
Other details of the analysis are omitted. 

4. Comparison with experimental data. - A typical 
example of the A1,Ti family is Mn,Au,-, [6] which 
has the Ni4Mo type ordering at x = 115, A13Ti 
type at x = 114 [7] and Au5Mn2 at x = 217 [8]. 
Our analysis concludes that the sequence can appear 
for V4 > 0 (see figure 2 and table IIa). The presence 
of the A1,Ti type and Pt2Mo one in Pd-V and Ni-V 
are consistent also with our analysis, though we 
expect then the Au5Mn2 type inbetween [6]. 

An interesting example of the intermediate family 
(the category 3) is Mn,Pd,-, alloys [9]. As is shown 
in figure 5, the MnPd, structure is intermediate 
between Cu,Au and A1,Ti being degenerate in 
energy with them on the boundary t = 0 in the 
present model. If more distant neighbors up to the 
tenth are taken into account, it can be lower in energy 
than Cu3Au and A1,Ti provided that 

is satisfied. Here the eighth neighbors are (2, 0, 0) 
and equivalent sites with respect to the origin ; the 
nineth ones are (2, 112, 112). MnPd, appears in the 
present analysis in a regime near the boundary 5 = 0 
(see figure 6), which is consistent with the result 
for MnPd,. Mn3Pd5 corresponding to 

on the other hand, is not obtained as the ground 
state in our analysis, though x = 318 can be the 
inflection point. This is because there is a related 
structure S(4/3, 713, 813, 1313 ; 318) (see figure 5) 
which appears in the regime (VIII) of figure 2 for 
V4 > 0. When Vk)s up to V,, are considered, the 
Mn,Pd5 o,m can be lower in energy with the condition 
2 V5 - 2 V, + 4 V, - 2 V8 > V,. In our opinion, 
however, the problem is' beyond the capability of 
the pairwise interaction model with fixed Vls, since 
the energy comparison on the MnPd, structure with 
a modification S(2, 3, 3, 712; 113) (see figure 5) 
yields an almost opposite condition 

It is interesting to note also that the Mn3Pd, structure 
has a modification having the same P i s  for all k 
(see figure 5) ; the pairwise interaction model cannot 
distinguish between them energetically. Regardless 

of these complications we may conclude that the 
Mn-Pd system belongs to the intermediate class. 

FIG. 5. -The structures of Pd3Mn, Pd2Mn and Pd,Mn,. a is a 
modification of Pd2Mn and b and 29 are those of Pd,Mn, (see 

the text). 

FIG. 6. -The ordered structures at x = 113. S(l, 1,6, 1 ; 113) 
(Pt,Mo) is of lowest energy in I, S(1, 2, 3, 3 ; 113) (Pd2Mn) in 11, 
S(1, 512, 2, 4 ; 113) in IV, S(1, 312, 1112, 1 ; 113) in VIII and 
S(1, 2, 4, 2 ; 113) in IX. In other regimes the two phase mixture, 
for example, that between Cu3Au and CuAuI in V is of lowest 

energy. 

Examples of the Cu3Au family are numerous. 
Usually only the Cu3Au and CuAuI are found in 
the range 114 < x ,< 112, which is expected if 

- V2 > 4 V4 > 0 qr V2 < 0 with V4 < '0 

is satisfied besides.5 < 0. In other regimes with 5 < 0 
we expect the additional appearance of ordered 
structures such as S(4/3, 2, 813, 6 ; 318) according to 
table 11. 

5. Remarks about the bcc and hcp cases. - For the 
bcc lattice a similar analysis assuming the minimum 
p ,  and Vk)s up to V4 has been carried out. Various 
ordered structures are found at x = 118, 116, 3/16, 
115, 219, 114, 113, 318 and 112. Since p,  is minimum, 
the structure at x = 112 is the CsCl type. If we neglect 
V4, the Fe3Al type appears in the regime V2 > 5 V3 
with V2 > 0 and the Si2Mo type in the regime, 
5 V3 >: V2 > 0 and 4 V3 > - V2 > 0 which do not 
overlap with the Fe3Al regime. Even when V4 is 
considered, the two types share either no regime 
(V4 > 0) or small overlap for V2 > 0 (V4 < 0). 
Further details will be published elsewhere. 

As for the hcp lattice Kudo and Katsura [lo] 
have carried out the analysis based on the method 
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of geometrical inequalities for the case of the ideal 
hcp with Vl and V2 only. The V1- V2 plane is divided 
in the same way as in the corresponding fcc case. 
Moreover there is one-to-one correspondence bet- 
ween the ordered structures ; for example, the MgCd 
type corresponds to the CuAuI and the Ni3Sn type 
to the Cu3Au. 

6. General tendency in the fcc transition metal alloys. 
- The A13Ti family structures are found in those 
binary alloys in which the majority component 
is a metal such as Al, Au, Ni, Pd and Pt and the 
minority component is a metal with less-than-half 
or half-filled d shell such as Ti, V, Cr and Mn. In the 
case of the Cu3Au family the component metals are 
closer to each other in the periodic table. In order to 
understand this general tendency, we calculate the 
interaction between two transition element atoms 
embedded in a free electron sea, assuming the Ander- 
son model for the virtual d state of each atom. The 
interaction arises from the indirect transfer of electrons 
between the two atoms via free electron states ; 
the formalism is based on the pseudo-Greenian theory 
previously developed [l 11. The calculation is obviously 
a simplification of the real situation. The general 
aspect of the result is, however, in agreement with 
that obtained by Parlebas [12] in his more detailed 
calculation of the pair energy in Cu. A similar calcu- 
lation has been carried out by Malmstrom et al. [13] 
though it aims at the magnetic interaction in alloys. 
Omitting the details, we mention here briefly the 
results for nonmagnetic atoms in the free electron 
sea correspo~ding to Au. The calculated V4 is positive 
for the less-half-filled d shell case and changes its 

sign when we, increase the number of electrons per 
atom, Nd to a value between 7 and 8. V2 and V3 
are negative for small Nd and becomes positive in 
the more-than-half filled region. < calculated with 
these V's is positive in the less-than-half region and 
negative in the more-than-half reglon. These results 
are consistent with the observed tendency according 
to the analysis given in previous sections. The above- 
mentioned behaviors of V4 and < do not change very 
much even when atoms have magnetic moment of 
up to 2 p ~ .  We omit the discussion of the high magnetic 
moment case where the situation is more complicated. 
When we study the conditions for the appearance 
of the Ni,Mo type with the calculated V's ,we conclude 
that it is satisfied for N, between 3.3 and 5.9 in the 
nonmagnetic case. Details of the calculation will be 
reported in near future. 

Concluding remarks. - The pairwise interaction 
model is obviously a crude model. More-than-two 
atom interactions are generally expected from the 
calculation of the electronic contribution. Also the 
assumption of a finite interaction range cannot 
be justified easily. Concentration dependence of 
V,'s is another factor to be considered. Nevertheless 
we believe that the analysis presented here will 
provide us with a useful guide in searching for ordered 
structures. For example we conclude that when the 
A13Ti and Pt,Mo types are found as in the' case of 
Pd-V, the complicate Mn2Au, should appear as 
far as V:s depend smoothly on the concentration. 
Our calculation of V,'s in transition metal alloys is 
still preliminary. The results so far obtained, however, 
seems to be encouraging. 
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