

E. S. R. OF Gd3+ IN La2O3 AND ITS SOLID SOLUTIONS WITH CeO2

G. Bacquet, C. Bouysset, D. Hernandez

▶ To cite this version:

G. Bacquet, C. Bouysset, D. Hernandez. E. S. R. OF Gd3+ IN La2O3 AND ITS SOLID SOLUTIONS WITH CeO2. Journal de Physique Colloques, 1976, 37 (C7), pp.C7-204-C7-207. 10.1051/jphyscol:1976747. jpa-00216904

HAL Id: jpa-00216904 https://hal.science/jpa-00216904

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

E. S. R. OF Gd³⁺ IN La₂O₃ AND ITS SOLID SOLUTIONS WITH CeO₂

G. BACQUET, C. BOUYSSET

Laboratoire de Physique des Solides (*) 118, route de Narbonne, 31077 Toulouse Cedex, France

and

D. HERNANDEZ

Laboratoire des Ultra-Réfractaires, B. P. 5, Odeillo, 66120 Font-Romeu, France

Résumé. — Les spectres de RPE des ions Gd^{3+} présents à l'état de traces dans La_2O_3 et $(La_2O_3)_{1-x}$ - $(CeO_2)_x$ sont caractéristiques d'une symétrie axiale suivant l'axe < 111 > et correspondent à un clivage en champ nul très important (~ 1,61 cm⁻¹). L'addition d'oxyde de cérium crée des distorsions aléatoires de la symétrie axiale. Par rapport aux spectres enregistrés avec La_2O_3 , cela se traduit par un fort élargissement de certaines raies de résonance.

Abstract. — In La₂O₃ and in its solid solutions with CeO₂, the ESR spectra of Gd³⁺ ions present as traces in sites of < 111 > axial symmetry are characterized by a strong zero-field splitting ($\sim 1.61 \text{ cm}^{-1}$). With respect to the La₂O₃ patterns, the random distorsions of the axial symmetry due to the introduction of Ceria, cause an important broadening of some lines.

1. Introduction. — The hexagonal modification of lanthanide oxides A-Ln₂O₃ belongs to the space group P $\overline{3}$ m 1(D_{3d}^3). The character of such a structure is that the metallic atom, La in our case, is sevenfold coordinated with C3v symmetry along the cristalline c axis (Fig. 1a). However, there are two types of oxygen atoms in this arrangement. One is inside a tetrahedron of lanthanum atoms, the other is six coordinated and is further remote from the metallic atoms than the former (about 2.70 Å versus 2.40 Å). Along the c axis (Fig. 1b) the structure is formed of a succession of slabs of a complex cation $(LaO)_n^{n+1}$ consisting of OLa4 tetrahedra edge-linked in a manner derived from the CaF₂ structure, separated by planes of oxygen anions [1]. This model implies a certain amount of covalent bonding inside the complex cation and the results of our previous experiments on Mn^{2+} doped La_2O_3 [2] are in good agreement with such considerations.

On the other hand by means of X-rays diffraction, Sibieude studied the evolution of the hexagonal modification of lanthanide oxides $A-Ln_2O_3$ by the addition of ThO_2 [3]. Intermediate phases having hexagonal or rhomboedral symmetries were found in the Ln_2O_3 rich domain. Their respective structures are deduced from $A-Ln_2O_3$ by stacking faults and are characterized by a great value of the *c* parameter. Such studies were also undertaken on the

$$(La_2O_3)_{1-x}(CeO_2)_x$$

system by Sibieude and coworkers [4, 5]. They showed that several intermediate phases resulting

(*) Associé au C. N. R. S.

FIG. 1. — a) Lanthanum coordination polyhedron. The lanthanum-oxygen distances are : $o_1 = 2.39$ Å, $o_2 = 2.48$ Å, $o_3 = 2.68$ Å, b) Schematic representation of the A-modification of lanthanide oxides after Caro [1].

from the addition of CeO_2 to La_2O_3 existed. They were observed in the range 5 to 35 mole % CeO_2 and their formation appears to be related to the method of synthesis used, i. e. co-fusion in air of

C7-205

oxides followed by an oxidizing anneal at 1 550 °C. Tentative indexation schemes have been reported [4].

In the aim to obtain a better understanding of what happens in the La₂O₃-CeO₂ system with increasing amount of Ceria, we undertook in Toulouse an Electron Spin Resonance (ESR) study on Gd^{3+} doped single crystal $(La_2O_3)_{1-x}(CeO_2)_x$. We report here the results obtained with x = 0.02 and x = 0.05, and we compare them to those corresponding to Gd^{3+} doped La₂O₃ [6, 7].

2. Experiments and results. — 2.1 SAMPLES. — The single crystals used in our experiments were obtained by one of us (D. Hernandez) with a solar furnace of the Laboratoire des Ultraréfractaires at Odeillo (France) using a slow cooling procedure, as described in [2]. They were conserved in quartz tubes sealed under vacuum to be preserved from moisture.

In the ESR experiments, the selected specimens were set at the centre of the cylindrical TE_{011} resonant cavity of a conventional X-band ($\lambda = 3$ cm) spectrometer. Inside this cavity the crystal can be rotated about two perpendicular axes, thus permitting its perfect orientation in the static field.

2.2 Gd³⁺ DOPED La₂O₃. — The Gd³⁺ ion has an electronic configuration $4f^7$ with a ground state of ${}^8S_{7/2}$. When this ion is introduced in the axial crystal field of La₂O₃ the ground level is split in four Kramers doublets, the distance between the two extreme being equal to 1.61 cm⁻¹, value which is very large [6, 7].

The spectra we recorded at room temperature with the d. c. field respectively parallel and perpendicular to the crystalline c axis are shown in figure 2a. It is worthwhile to underline here that the linewidth values are included between 11 and 23 G. This is due to the extreme care we took to avoid the hydration of samples during our experiments. We checked recently [8] that one of the first effects of the hydration is to broaden the ESR lines. This can explain the values (from 50 to 70 G) observed in our first experiments [6].

The La_2O_3 : Gd^{3+} spectra were fitted to a spin Hamiltonian :

$$\mathcal{K}_{\mathbf{S}} = g\mu_{\mathbf{B}} \mathbf{H} \cdot \mathbf{S} + B_2^0 O_2^0 + B_4^0 O_4^0 + B_6^0 O_6^0 + B_4^3 O_4^3 + B_6^3 O_6^3 \quad (1)$$

with S = 7/2 and where the O_n^m are the Stevens' operator equivalents. The best computer fit was obtained with the constants quoted in table I the values of which very slightly differ from those we reported previously [6].

2.3 Gd^{3+} DOPED $(\text{La}_2O_3)_{1-x}$ $(\text{CeO}_2)_x$. — Addition of CeO_2 introduces some striking modifications in the spectra, specially when the *c* axis is aligned with the static field as can be seen in the left part of figure 2.

Fig. 2. — Room temperature spectra of Gd^{3+} ions in : *a*) La₂O₃; *b*) (La₂O₃)_{0.98}-(CeO₂)_{0.02}; *c*) (La₂O₃)_{0.95}-(CeO₂)_{0.05}; *d*) (La₂O₃)_{0.95}-(CeO₂)_{0.05} annealed during 4 hours at 1 550 °C in oxidizing atmosphere.

Now some lines are very broad (up to 85 G) and their intensity is much weaker than in La₂O₃. On the other hand, two lines appear in the low field region which correspond to $\Delta m_s > 1$ fine structure transitions. They become allowed by the existence of random deviations to the axial symmetry (due to the presence of Cerium atoms in different neighbour sites) which introduce variable amount of mixing in the eigenstates. The line $(|-3/2 > \rightarrow |3/2 >)$ located at about 1 140 G, very close to the crossing of the levels corresponding to $|+1/2 > and |-3/2 > Gd^{3+}$ states in La₂O₃ (we use the high field notation for the eigenstates) is completely dissymmetrical looking like an absorption line. A possible explanation might be the following. In our solid solutions an extrarhombic distorsion creates a repulsion between these two levels. For a given magnetic field value (and specially near the original crossing), the existing distorsions have different strengths and directions, then each corresponding level is differently shifted in energy. In the diagram translating the situation in the crystal as a whole, the eight levels will be more or less spread out in energy. The most important effect arise in this magnetic field region where the above repulsion takes place.

			Spin Hamiltonian parameters of Gd ³⁺	
Gyromagnetic factor		$\begin{array}{c} La_2O_3 \\ 1.991 \ 8 \ \pm \ 0.000 \ 3 \end{array}$	$\begin{array}{c} (\text{La}_2\text{O}_3)_{0.98}(\text{CeO}_2)_{0.02} \\ 1.992\ 5\ \pm\ 0.003 \end{array}$	$\begin{array}{c} (\text{La}_2\text{O}_3)_{0.95}\text{-}(\text{CeO}_2)_{0.05} \\ 1.993\ 2\ \pm\ 0.000\ 3 \end{array}$
Second order constants B_2^m in 10^{-4} cm ⁻¹	т 0		$$ 440.4 \pm 0.1	
	2	0	$-1.86 \mp 0.02 \leqslant \leqslant 1.86 \pm 0.02$	$-4.65\pm0.02\leqslant 4.65\pm0.02$
Forth order constants B_4^m in 10^{-4} cm ⁻¹	0 2 3	$\begin{array}{c} 0.314 \pm 0.002 \\ 0 \\ 6.56 \pm 0.03 \end{array}$	$\begin{array}{c} 0.313 \pm 0.002 \\ (1.86 \pm 0.02) \times 10^{-3} \geqslant \geqslant (-1.86 \mp 0.02) \times 10^{-3} \\ 6.64 \pm 0.03 \end{array}$	$\begin{array}{c} 0.313 \pm 0.002 \\ (3.72 \pm 0.02 \ 10^{-3} \ge > (-3.72 \mp 0.02) \times 10^{-3} \\ 6.64 \pm 0.03 \end{array}$
Sixth order constants B_6^m in	0	$(1.53\pm0.03)\times10^{-4}$	$(2.47 \pm 0.03) \times 10^{-4}$	$(2.47 \pm 0.03) \times 10^{-4}$

TABLE I

When H is perpendicular to the c axis the spectra are identical to that of La_2O_3 : Gd^{3+} if we except the strong broadening (up to 100 G) and the consequent lower intensity of the second and fifth lines in the increasing fields sense.

The spectra were described by a spin Hamiltonian of the form (1) to which the terms $B_2^2O_2^2$ and $B_4^2O_4^2$ were added. The constants corresponding to the two studied solid solutions are given in table I. The zero field splittings obtained are as large as in the Gd³⁺ doped La₂O₃ case.

No fundamental differences are seen in the spectra

recorded with Gd^{3+} doped $(La_2O_3)_{0.95}(CeO_2)_{0.05}$ single crystals before and after heating at 1 550 °C in oxidizing atmosphere during 4 hours (Fig. 2c and d). This can be understood considering the minor modifications existing in the La₂O₃ and $(La_2O_3)_{0.95}(CeO_2)_{0.05}$ X-ray diffraction patterns obtained with powdered samples [4] and shown in figure 3.

Further experiments are in progress on samples containing greater amounts of Cerium oxide and which are doped with either Gd^{3+} and Mn^{2+} .

C7-206

References

- [1] CARO, P., J. Less Common. Met. 16 (1968) 367.
- [2] BOUYSSET, C., ESCRIBE, C., BACQUET, G. and SIBIEUDE, F., Mat. Res. Bull. 11 (1976) 67.
- [3] SIBIEUDE F., J. Solid State Chem. 7 (1973) 7.
- [4] SIBIEUDE, F., HERNANDEZ, D. and FOEX, M., C. R. Hebd. Séan. Acad. Sci. 278C (1974) 1273.
- [5] FOEX, M., SIBIEUDE, F., ROUANET, A. and HERNANDEZ, D., J. Mater. Sci. 10 (1975) 1255.
- [6] BOUYSSET, C., ESCRIBE, C., FERRER-ANGLADA, N. and SIBIEUDE, F., Proc. of 18th Ampere Congress Nottingham (1974) Vol. 1, p. 159.
- [7] VIVIEN, D., KAHN, A., LEJUS, A. M. and LIVAGE, J., Phys. Status Solidi (b) 73 (1976) 593.
- [8] BACQUET, G., BOUYSSET, C. and ESCRIBE, C., J. Solid State Chem. 18 (1976) 247.