DEFECT 119Sn ATOMS AFTER NUCLEAR DECAYS AND REACTION IN SnSb AND SnTe
F. Ambe, S. Ambe

To cite this version:
F. Ambe, S. Ambe. DEFECT 119Sn ATOMS AFTER NUCLEAR DECAYS AND REACTION IN SnSb AND SnTe. Journal de Physique Colloques, 1976, 37 (C6), pp.C6-923-C6-925. <10.1051/jphyscol:19766198>. <jpa-00216724>

HAL Id: jpa-00216724
https://hal.archives-ouvertes.fr/jpa-00216724
Submitted on 1 Jan 1976

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
DEFECT 119Sn ATOMS AFTER NUCLEAR DECAYS AND REACTION IN SnSb AND SnTe

F. AMBE (*) and S. AMBE (*)

The Institute of Physical and Chemical Research, Wako-shi, Saitama, 351 Japan

Résumé. — On a étudié par spectroscopie d’émission le site des atomes 119Sn créés par capture électronique et réaction protonique dans SnSb et SnTe. Dans Sn119Sb et Sn120mTe, les atomes 119Sn ont été trouvés dans les sites de Sb ou Te des matrices. Les atomes de recul 119Sb créés par réaction protonique, ont été trouvés uniquement dans les sites de Sb dans SnSb alors que dans SnTe ils sont distribués dans les sites de Sn et Te.

Abstract. — The lattice position of 119Sn atoms after EC decays and a proton-reaction was studied in SnSb and SnTe by emission spectroscopy. In Sn119Sb and Sn120mTe, defect 119Sn atoms were found in the Sb or Te site of the matrices. The 119Sb recoil atoms after the proton reaction were found only in the Sn site of SnSb, but they were distributed between both the Sn and Te sites of SnTe.

The defect structures of 119Sn atoms produced by nuclear decays and reaction have been investigated in the matrices of SnSb and SnTe as a part of Mössbauer emission studies on 119Sn with 119Sb as the source nuclide [1-4]. The nuclear processes studied were the following ones characterized by different recoil energies (E_R) relative to the displacement energy in solid (E_D) :

(a) 119Sb \rightarrow 119Sn ($E_R \ll E_D$)
(b) 119mTe \rightarrow 119Sb \rightarrow 119Sn ($E_R \approx E_D$)
(c) 120Sn(p, 2n) 119Sb \rightarrow 119Sn ($E_R \gg E_D$).

The Mössbauer emission spectra of 119Sn arising from 119Sn were measured in (a) and (b) on the SnSb and SnTe sources labeled with 119Sb or 120mTe, and in (c) on the samples irradiated by protons. A preliminary report on the proton-irradiated SnTe has been already made [5].

Tin metal depleted in 119Sn(120Sn 98.39 %, 119Sn 0.39 % referred to hereafter as 120Sn) was employed in preparing the sources to minimize the resonant self-absorption of the Mössbauer γ-rays. Irradiation of the 120SnSb and 120SnTe samples were carried out with 15 MeV protons on a water-cooled aluminum plate under a helium atmosphere. The irradiated powder samples gave no visible indication of melting. The emission spectra were measured at 78 K against a BaSnO$_3$ absorber (0.9 mg 119Sn/cm2) at the same temperature. Measurements on the 120Sn119mTe samples were started after a radioactive equilibrium has been established between 120mTe and 119Sn.

The 120Sn119Sn sources gave an emission line with an isomer shift of 2.43 ± 0.03 mm/s relative to BaSnO$_3$ at 78 K, as may be seen in figure 1a. Comparison of the isomer shift with that of the absorption line of the same compound (2.79 ± 0.03 mm/s) indicates that the 119Sn atoms arising from 119Sb in the SnSb matrix are in an electronic state different from that of the tin atoms in the normal Sn site of SnSb. Since the recoil energy associated with the EC decay of 119Sn to 119Sn is much smaller (1.4 eV) than the displacement energy, no displacement of the 119Sn atoms from the original site of 119Sn is expected. Therefore, the observed emission line is attributed to the defect 119Sn atoms in the Sn site of the SnSb matrix.

As the recoil energy of the 119mTe \rightarrow 119Sn is estimated to have a distribution with a minimum value below the displacement energy and a maximum exceeding it, partial displacement of the decaying atoms is expected in the successive decays, 119mTe \rightarrow 119Sb \rightarrow 119Sn. In fact, two lines with isomer shifts of 2.24 ± 0.05 mm/s and 3.3 ± 0.2 mm/s were observed in the emission spectra of 120Sn119mTe (Fig. 1b). The latter line is attributed to 119Sn in the Sn site of SnTe, since the isomer shift is close to that of the absorption line of the same compound (3.54 ± 0.05 mm/s). The former line is consequently attributed to 119Sn resting in the Te site.

(*) Present address: FB8 Kernchemie, Technische Hochschule Darmstadt, 61 Darmstadt, West Germany.
On the basis of these results together with the data reported previously [2, 3], a systematics was established between the isomer shift of defect and normal 119Sn atoms and the electronegativity of the nearest neighbor atoms in metals and binary compounds of Sn, Sb and Te. In these systems the isomer shift is determined to the first approximation by the nearest-neighbor atoms and increases with an increase in the electronegativity of the nearest-neighbor atoms.

From the isotopic composition of tin and the energy of protons the main reaction leading to 119Sb in the proton-irradiation is estimated to be the 120Sn(p, 2 n)119Sb. The accompanying recoil energy is so large ($\sim 10^2$ keV) that all the 119Sb atoms are knocked out from the original site of 120Sn. Since the following EC decay of 119Sb to 119Sn brings about no atomic displacement, the lattice position of 119Sb is considered to have been the same as that of its daughter 119Sn, which is estimated from the emission spectra.

As may be seen in figure 2a, the 119Sn atoms arising from 119Sb recoiled by the proton-reaction in 120SnSb gave an emission line with an isomer shift of 2.42 ± 0.03 mm/s. The isomer shift is essentially the same as that of the labeled source 120Sn119mTe. This shows that the 119Sn atoms and, accordingly, also the 119Sb atoms were in the Sb site of the matrix.

The emission spectra of proton-irradiated 120SnTe were composed of two lines with isomer shifts of 2.3 ± 0.1 mm/s and 3.48 ± 0.05 mm/s (Fig. 2b), indicating that the recoil 119Sb atoms came to rest in two different states. The latter line is attributed to 119Sn in the normal lattice position of Sn in SnTe, because its isomer shift is the same as that of the absorption line of SnTe within the experimental errors. The former line is attributed to 119Sn in the Te site (possibly accompanied with some near-by defects), referring to the dominant emission line of the labeled source 120Sn119mTe.

The absorption spectra of the irradiated 120SnSb and 120SnTe revealed no radiation damage of the matrix by protons, giving only one line corresponding to 119Sn in the normal lattice site. This confirms that the emission spectra described above do not reflect the macroscopic radiation effects of protons, but reveal the consequences of the proton reaction leading to 119Sb.

In the proton-irradiated 120SnSb, one cannot disregard the possibility that the observed distribution of 119Sn is the result of local melting of the matrix along the recoil track. In 120SnTe, however, the idea is not compatible with the following observations. Firstly, the distribution shows a marked change by thermal annealing after irradiation. Secondly, the 120SnTe samples melted once after irradiation give a different spectrum.

It may be noteworthy that the 119Sb atoms were found in the two distinct lattice positions of 120SnTe after recoil by the proton reaction. This shows that...
the SnTe lattice is preserved to a large extent in the vicinity of the 119Sb atoms and suggests that the 119Sb atoms have been stabilized at one of the lattice points with a rather unperturbed environment as the result of a replacement collision and the following annealing process.

References