SECONDARY DEFECTS IN QUENCHED ALUMINIUM STUDIED BY MOSSBAUER SPECTROSCOPY
Chr. Janot, H. Georges-Gibert

To cite this version:
Chr. Janot, H. Georges-Gibert. SECONDARY DEFECTS IN QUENCHED ALUMINIUM STUDIED BY MOSSBAUER SPECTROSCOPY. Journal de Physique Colloques, 1976, 37 (C6), pp.C6-903-C6-903. <10.1051/jphyscol:19766192>. <jpa-00216717>

HAL Id: jpa-00216717
https://hal.archives-ouvertes.fr/jpa-00216717
Submitted on 1 Jan 1976

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SECONDARY DEFECTS IN QUENCHED ALUMINIUM STUDIED BY MÖSSBAUER SPECTROSCOPY (*)

Chr. JANOT and H. GEORGES-GIBERT
Laboratoire de Physique du Solide, Case Officielle n° 140, 54037 Nancy Cedex, France

Abstract. — We measured the Debye-Waller factor, the isomer shift and the second-order Doppler effect in a quenched aluminium based alloy containing 200 ppm of 57Fe, after an annealing treatment up to temperatures ranging from 78 to 623 K. A discontinuity in the smooth variations of the Mössbauer parameters appeared for samples annealed at temperatures around 260 K, which depends on the quenching rate and the thermal history of the specimen. This discontinuity was interpreted both in terms of vacancies trapped at 57Fe impurities and the subsequent agglomeration process, and of annealing of the dislocation loops up to the initial stage of the precipitation of the iron. Supplementary investigations of the overall variations of the Mössbauer parameters led to information on the 3d \rightarrow s electron transfer process related to the isomer shift temperature dependence.

(*) This paper is part of H. Georges-Gibert’s doctoral thesis.