FREEDERICKSZ TRANSITION OF A HOMEOTROPIC NEMATIC LIQUID CRYSTAL IN ROTATING MAGNETIC FIELDS

F. Brochard, L. Léger, R. Meyer

To cite this version:
F. Brochard, L. Léger, R. Meyer. FREEDERICKSZ TRANSITION OF A HOMEOTROPIC NEMATIC LIQUID CRYSTAL IN ROTATING MAGNETIC FIELDS. Journal de Physique Colloques, 1975, 36 (C1), pp.C1-209-C1-213. <10.1051/jphyscol:1975139>. <jpa-00216218>

HAL Id: jpa-00216218
https://hal.archives-ouvertes.fr/jpa-00216218
Submitted on 1 Jan 1975

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
FREEDERICKSZ TRANSITION
OF A HOMEOTROPIC NEMATIC LIQUID CRYSTAL
IN ROTATING MAGNETIC FIELDS

F. BROCHARD, L. LÉGER and R. B. MEYER (**)

Laboratoire de Physique des Solides (*), Université Paris-Sud, Centre d’Orsay
91405 Orsay, France

1. Introduction. — If a magnetic field \(H \) is applied perpendicular to the optical axis of a nematic slab, the average direction of orientation of the molecules is distorted for \(H \) larger than a threshold field \(H_{\text{c}} \). For the homeotropic configuration (Fig. 1)

\[
H_{\text{c}} = \frac{\pi}{d} \sqrt{\frac{K_3}{\lambda_3}},
\]

where \(d \) is the sample thickness, \(K_3 \) the Frank elastic constant for bend distortions and \(\chi_a \) the anisotropic part of the diamagnetic susceptibility [1]. As the distortion appears, the director \(\mathbf{n} \) remains in the plane \((H, n_0) \), and the configuration is entirely defined by the angle \(\theta(z) \) between \(\mathbf{n} \) and \(n_0 \) (Fig. 1). \(\theta(z) \) can be determined by writing the equilibrium between the elastic and the magnetic torques acting on the director.

The case of a rotating field is more complex. The Freedericksz transition in a rotating field has previously been studied by Gasparoux and Canet [2], but their geometry is complex (planar anchoring of the molecules) and their results are not yet understood.

We have chosen the homeotropic geometry. In that case, the normal orientation of the molecules at the glass plates provides a pivot layer for the molecular rotation, and allows for a uniform distortion in the whole sample.

— If \(H \) rotates very slowly, \(\mathbf{n} \) remains in the rotating plane \((H, n_0) \), and the distortion appears for \(H = H_{\text{c}} \).

— If \(H \) rotates at infinite frequency, we have something similar to the Freedericksz transition with an electrical field \(E = H/\sqrt{2} \), normal to the plates, and a
negative dielectric anisotropy $\varepsilon_2 = -\chi_2$ (complete degeneracy for the tilt direction in the plane of the slab). The distortion appears for $H_{ew} = \sqrt{2} H_{ew}$.

The present paper essentially shows experimental and theoretical investigations of what happens between those two limiting cases. We shall see that two thresholds are necessary to describe the behaviour of the director:

1) $H_s(\omega)$, threshold for the synchronous rotation of the molecules with the field.
2) $H_f(\omega)$, threshold for the Freedericksz distortion.

2. General equation. — In the static case, we have seen that one angle $\theta(z)$ is necessary to describe the distorted configuration. In the rotating case, n is defined by two angles, θ and ϕ (Fig. 2). The motion and γ_1 is an effective viscosity for the rotation of the director, taking backflow effects into account [4]. The velocity field is normal to the rotating plane (\mathbf{n}_n, \mathbf{n}) of the distortion and confined to two boundary layers of thickness of the order

$$\xi(H) = \frac{1}{H} \sqrt{\frac{K_3}{\chi_2}}.$$

At high fields, these boundary layers are thin compared to d, and backflow corrections to γ_1 are negligible.

An important simplification comes from the fact that eq. (1c) gives the evolution of ϕ, independently of θ. Thus we shall first discuss the evolution of ϕ, supposing that the distortion exists, and then we shall discuss the evolution of θ.

3. Threshold field for the synchronous rotation $H_s(\omega)$. — The eq. (1c) can be written as

$$\tau \dot{\phi} = \sin 2(\omega t - \phi) \quad (2)$$

where τ is a characteristic time of the nematic

$$\tau = \frac{2 \gamma_1}{\chi_2 H^2},$$

$\omega \tau = 1$ defines a characteristic field

$$H_s(\omega) = \left(\frac{2 \gamma_1 \omega}{\chi_2}\right)^{1/2}.$$

3.1 $H > H_s(\omega) (\leftrightarrow \omega \tau < 1)$. — The nematic follows the rotation of the field with a constant retardation angle α (Fig. 3).
Experimentally, this regime is rather easy to characterize: with a polarizer at an angle α with respect to the field, and a crossed analyzer, a stable extinction of the transmitted intensity is obtained for a given field H_α, at each frequency. The corresponding equal retardation angle curves are shown in the H^2 versus ω diagram of figure 4, for $\alpha_1 = 10^\circ$ and $\alpha_2 = 20^\circ$.

They are observed to be straight lines. The line $\alpha = \pi/4$ defines $H_\alpha(\omega)$, and limits the synchronous regime.

3.2 $H < H_\alpha(\omega)$ ($\omega T \gg 1$). — Now the characteristic time τ for the rotation of the molecules is long compared to the periodicity of the field, and the molecules cannot follow the too rapid rotation of the field. The retardation angle is no longer constant in time.

The solution of eq. (2) is given by

$$\varphi = \omega t - \alpha(t)$$

$$\tan(\alpha(t)) = \frac{\omega \tau}{1 - \frac{1}{\omega^2 \tau^2}}^{1/2} \times$$

$$\times \tan\left(\frac{1}{\tau} (\omega^2 \tau^2 - 1)^{1/2} + \phi_0\right).$$ (3)

With a polarizer parallel to the field, and a crossed analyzer, we can observe $\sin^2 (\alpha(t))$ as the intensity of transmitted light.

$\sin^2 (\alpha(t))$ is a periodic function of time, with a periodicity

$$T = \frac{\pi \tau}{(\omega^2 \tau^2 - 1)^{1/2}}.$$ (4)

This gives a convenient linear relationship between T^{-2} and H^4:

$$\frac{\pi^2}{\omega^2 T^2} = 1 - \frac{H^4}{H_\alpha^4(\omega)}.$$ (5)

Figure 5 shows a typical recording of the transmitted intensity through the sample, in the case where we have a distorted configuration, but H smaller than $H_\alpha(\omega)$.

The exact form of the curve depends on both α and birefringence effects (depending on the time variation of θ) which changes the color of the transmitted light. However, the period T and the two semi-periods

$$0 < \alpha < \frac{\pi}{2}, \quad \text{and} \quad \frac{\pi}{2} < \alpha < \pi$$

are well defined.

Figure 6 shows a plot of $\frac{\pi^2}{\omega^2 T^2}$ versus H^4, for different values of ω. The linear behavior predicted by
eq. (5) is well observed, and allows for an accurate determination of \(H_c(\omega) \) (Fig. 4) (*).

The field dependence of the relative values of the semi-periods is also in agreement with eq. (3).

4. Threshold field for the distortion \(H_c(\omega) \). — The evolution of the Freedericksz distortion is given by eq. (1a, b), and can be written

\[
\gamma_4 \frac{\partial \theta}{\partial t} = \chi_\alpha H^2 \cos^2 \alpha \sin \theta \cos \theta + f(\theta). \tag{6}
\]

Two kinds of behaviour are expected, depending on whether \(\alpha \) is constant or not:

4.1 **SYNCHRONOUS REGIME** \(H_c(\omega) > H_c(\omega) \). — If the distortion appears in the synchronous rotation regime, the retardation angle \(\alpha \) is constant, and we have something equivalent to the static case, with an effective field \(H \cos \alpha \), smaller than \(H \).

The threshold field for the distortion is then given by \(H_c(\omega) = H_c / \cos \alpha \), i.e.

\[
\frac{H_c^2(\omega)}{H_c^2} = 1 + \frac{\omega^2}{\omega_1^2}
\]

with \(\omega_1 = \frac{K_3 \pi^2}{\gamma_4 d} \), representing the limiting frequency for this synchronous regime at threshold. Experimental determination of \(H_c(\omega) \) in the synchronous regime is shown on the left part of figure 4. For \(\omega = \omega_1 \), \(H_c(\omega) = H_c(\omega) \), and the distortion appears at \(H_c(\omega) \) with the maximum retardation angle \(\alpha = \pi/4 \).

4.2 **ASYNCHRONOUS REGIME** \(H_c(\omega) < H_c(\omega) \). — For \(\omega > \omega_1 \), the distortion appears in the asynchronous regime. \(\alpha \) is modulated in time, and eq. (6) becomes much more complex. In order to discuss the appearance of the distortion, we look at the evolution of the thermal fluctuation of wave vector \(\Omega = 0 \), \(\Omega = \pi / d \) which is first destabilized at the Freedericksz transition.

With \(\theta = \theta_M \cos \pi \omega / d \), eq. (6) can be written

\[
\left(\cos^2 \alpha(t) - \frac{\pi^2}{d^2} \right) \theta_M = \frac{\gamma_4}{2} \frac{\partial \theta_M}{\partial t}
\]

where \(\zeta \) is the magnetic coherence length \(\zeta = \frac{1}{\langle H \rangle} \sqrt{\frac{K_3}{2 \chi_\alpha}} \).

The fluctuation becomes unstable for

\[
S = \frac{2}{\tau} \left(\cos^2 \alpha - \frac{\pi^2}{d^2} \right) > 0
\]

\(S \) is modulated in time, with the periodicity \(T \).

— For \(H < H_c \), \(S \) is always negative, and the nematic remains immobile.

(*) Another way to measure \(\tau \) is to rotate the sample quickly by a small angle \(\alpha_0 \) relative to the field (now static), and watch the relaxation of the director back to \(\alpha = 0 \). The transmitted light intensity now decays exponentially to zero with a relaxation time \(\tau / 4 \).

Fig. 7. — Defects observed at the Freedericksz transition. The degeneracy for the distortion depends on the frequency: a) at \(\omega = 0 \), walls; b) at \(\omega \tau \), umbilics; c) at intermediate \(\omega \), spirals.
For $H_a < H < \sqrt{2} H_a$ there is no finite distortion but the thermal fluctuations are amplified; during a part of the period T, S is positive and fluctuations tend to grow, but before the Freedericksz transition can occur, S becomes negative and the fluctuations relax [5].

5. Defects. — In the above discussions, we have supposed that the distortion was uniform in the whole sample. We know in fact, that if the magnetic field is exactly normal to n_0, there is some degeneracy for the distortion, which is no longer uniform.

In the zero frequency limit, the distortions θ and $-\theta$ are energetically equivalent, and we obtain domains, separated by walls [6-7].

In the infinite frequency limit, there is a complete degeneracy for φ, and we obtain umbilics [8], completely similar to those obtained for the electrical field analogue given in the introduction.

For intermediate frequencies, we obtain some very nice configurations, with spirals, or even some more complicated figures. An example of a spiral is shown on figure 7.

6. Conclusion. — We have seen that when a nematic slab is in a magnetic field normal to n_0 and rotating in the plane of the slab, then its behavior is dominated by two threshold fields:

- $H_s(\omega)$ threshold for the synchronous rotation of the director.
- $H_d(\omega)$ threshold for the distortion.

For $\omega = \omega_0$, $H_s(\omega) = H_d(\omega)$.

For $\omega < \omega_0$, the distortion appears in the synchronous regime, and looks very similar to the static one, except that the threshold $H_s(\omega)$ is larger than H_c.

For $\omega > \omega_0$, the distortion appears in the asynchronous regime. The director rotates more slowly than the field. The retardation angle between the field and the director is periodic in time, with a periodicity which diverges as H is increased to $H_s(\omega)$.

Experimental observations are in good agreement with those predictions, and the Freedericksz transition in rotating fields reveals itself a useful tool to investigate not only the static, but also the dynamic behaviour of the nematic mesophases. In particular, the measure of H_s versus ω is an accurate way to determine the twist viscosity γ_1.

References