MEASUREMENTS OF TRANSPORT PROPERTIES IN THE NEMATIC AND SMECTIC PHASES OF VARIOUS COMPOUNDS

A. Mircea-Roussel, L. Léger, F. Rondelez, W. De Jeu

To cite this version:

HAL Id: jpa-00215893
https://hal.archives-ouvertes.fr/jpa-00215893
Submitted on 1 Jan 1975

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
MEASUREMENTS OF TRANSPORT PROPERTIES IN THE NEMATIC AND SMECTIC PHASES OF VARIOUS COMPOUNDS (*)

A. MIRCEA-ROUSSEL, L. LÉGER (**) and F. RONDELEZ (***)
Laboratoires d’Electronique et de Physique Appliquée,
3, avenue Descartes, 94450 Liméil-Brevannes, France

and

W. H. DE JEU
Philips Research Laboratories Eindhoven, Netherlands

Abstract. — Electrical conductivities parallel and perpendicular to the long axis of the molecules (respectively \(\sigma_{\parallel} \) and \(\sigma_{\perp} \)) are presented for the nematic and smectic (A and B) phases of various compounds having a low latent heat of transition smectic A \(\rightarrow \) nematic. All the materials show pretransitional effects in their nematic phase. The study of conductivity in smectics A has led us to distinguish two groups of materials. In the first one \(\sigma_{\parallel} \) becomes equal to \(\sigma_{\perp} \) a few degrees above the smectic A-nematic transition, while \(\sigma_{\parallel} \) is at least five times smaller than \(\sigma_{\perp} \) in the smectic A phase. Furthermore \(\sigma_{\perp} \) increases anomalously with decreasing temperature, which is observed also for the dye diffusion coefficient normal to the molecular axis. In the second group \(\sigma_{\parallel} \) differs only slightly from \(\sigma_{\perp} \). The different behaviour of the conductivity in this group is probably related to the fact that the smectic A layers comprise two molecules.

Introduction. — Data of Carr [1] on ethyl-p-(p’-methoxybenzylidene)-aminocinnamate have suggested that in the smectic A phase the conductivity along the long molecular axis, \(\sigma_{\parallel} \), is lower than the conductivity \(\sigma_{\perp} \), normal to this axis, contrary to what happens in nematics such as MBBA and PAA [2]. This fact has been indirectly confirmed by Rondelez [3], who has found an unusual decrease of the ratio \(R = \sigma_{\parallel}/\sigma_{\perp} \) with decreasing temperature in some nematic compounds exhibiting short-range smectic order.

In this paper we report on measurements of \(\sigma_{\parallel} \), \(\sigma_{\perp} \) and \(R \) in the whole mesomorphic range of compounds presenting a nematic, a smectic A, and for some of them a smectic B phase. For one compound we have also determined the diffusion coefficients of dyes parallel (\(D_{\parallel} \)) and perpendicular (\(D_{\perp} \)) to the long axis of the molecules, and the ratio \(R’ = D_{\parallel}/D_{\perp} \).

Experimental conditions. — We have studied several compounds:

a) some Schiff bases:
N-(p-butyloxybenzylidene)-p’-octylaniline (40.8).
N-(p-hexyloxybenzylidene)-p’-octylaniline (60.8).
N-(p-pentyloxybenzylidene)-p’-pentylaniline (50.5).
N-(p-pentyloxybenzylidene)-p’-heptylaniline (50.7).
N-(p-cyanobenzylidene)-p’-octyloxyaniline (CBOOA).

b) some biphenyls:
p-cyano-p’-octyl biphenyl (COBP).
p-cyano-p’-octyloxy biphenyl (COOBP).

and

c) p,p’-di-heptyloxy benzene (HEPTAB) [4].
Their formulae, phase diagrams and heats of transition are summarized in table I. They all have a low heat of transition at the nematic to smectic A phase transition.

The determination of the components of the tensor of conductivity is made by measuring the capacity and the losses of a nematic slab placed between two parallel SnO$_2$ coated glass electrodes spaced by two 75 μm-thick teflon spacers. Measurements are performed at 1 kHz, using a Gereal Radio 1609 A bridge. The measurements on HEPTAB are at 1592 Hz, using a Wayne-Kerr B 642 autobalance bridge.

The sample is set inside an electronically regulated oven whose overall stability is better than 0.01 $^\circ$C. A magnetic field of 20 kOe is used to align the molecules parallel or perpendicular to the glass plates in the nematic phase. When slowly cooling down the sample with the field on, the alignment is maintained in the smectic A phase. This could be verified optically.

2. DYE DIFFUSION COEFFICIENTS. — We have used a method developed by Rondelez [5] for MBBA and made it suitable for 40.8. A drop of a 1 % solution of methyl red (MR) in 40.8 is injected in a 200 μm diameter hole drilled in the upper glass plate limiting the sample. Planar anchoring of the molecules is achieved by evaporating silicon monoxide on the glass plates at oblique incidence [6], and is checked by conoscopy.

The sample is inserted in a similar oven. The lateral gradient over the whole sample (25 x 25 mm) is smaller than 10^{-2} $^\circ$C. The coloured spot is photographed as a function of time. From the optical density parallel and perpendicular to the molecular axis we can deduce D_\parallel and D_\perp.

Results. — Figure 1 shows σ_\parallel, σ_\perp, and the ratio $R = \sigma_\parallel/\sigma_\perp$ for undoped 40.8 as a function of temperature. R, which is larger than unity close to the nematic-isotropic phase transition T_{NI}, decreases with
decreasing temperature down to unity a few degrees above the nematic to smectic A phase transition T_{SN}. R decreases further in the smectic A phase, and finally reaches a very small value, 0.1, in the smectic B phase. In the nematic phase, depending on the temperature, values of R larger than 1, equal to 1 or smaller than 1 are observed. The latter case gives rise to interesting electrohydrodynamic properties [7].

The ratio $R' = D_{II}/D_L$ is plotted in figure 1. R' behaves in a way similar to R, with an overall translation towards lower temperatures. We have not been able to measure R' for temperatures lower than 54 °C: only D_L can be measured, D_{II} becomes too small to be determined with some accuracy by the method we use. But D_L behaves in a way completely similar to σ_\perp: leveling off in the smectic A phase and an increase at the smectic A-smectic B transition.

In the smectic phases σ_\parallel decreases continuously with decreasing temperature and then saturates. The saturation value depends on the quality of the molecular alignment. This can be explained by the fact that defects, if present, correspond to small disoriented volumes in the sample for which we measure the conductivity σ_\perp, which is much larger than σ_\parallel.

The behaviour of σ_\parallel is more surprising: σ_\parallel decreases with decreasing temperature in the nematic phase, then increases around T_{SA} becomes stationary in the smectic A phase, then sharply increases at the smectic A-smectic B transition. Clearly the smectic B ordering strongly favours the motion of the charged particles inside the smectic layers.

The electric conductivities of 60.8, 50.7, 50.5 (Fig. 2 and 3) and HEPTAB (Fig. 4) have the same characteristics. In figure 4 the dotted curves represent σ_\parallel and R for a 3% TMAB (tetramethyl-ammonium bromide) doped sample of HEPTAB. The increase of σ_\parallel has disappeared, and R has somewhat higher values than in a pure sample [8].

These conductivity data are hard to interpret as long as we are not able to know the exact nature of the charge carriers. For that reason we have also the measured the dye diffusion coefficients of MR in 40.8. For the three other compounds studied the behaviour of the electrical conductivities is completely different. Figures 5 and 6 display σ_\parallel, σ_\perp and R for COOBP and CBOOA, respectively. In that case σ_\parallel and σ_\perp decrease with decreasing temperature. After an increase near T_{NI}, R decreases continuously and saturates in the smectic A phase at the value 1 for COOBP (no anisotropy of the electrical conductivities) and at a value close to 1 (0.85) in CBOOA. COBP behaves like COOBP.
Discussion. — The shape of the curve for R in the nematic phase is a feature common to all the compounds studied and can be explained as follows. Near T_{N1}, R behaves in the same way as the nematic order parameter. Then, when the temperature decreases, the ions begin to experience a short-range smectic order superimposed to the nematic order [9], leading to a gradual decrease of R until the characteristic situation of smectic A is reached. For HEPTAB this short-range smectic order was found to have a profound effect on the dielectric properties too [10].

With regard to the transport properties in the smectic A phase we can distinguish two groups of compounds:

- The first group includes 40.8, 60.8, 50.5, 50.7 and HEPTAB. It is characterized by a very low ratio $\sigma_{//}/\sigma_{\perp}$.
in the smectic phases: the flow of charge carriers or dyes is much easier in the smectic layers than normal to them. σ_\parallel is about five times smaller than σ_\perp. Qualitatively this can be understood from the anisotropic forces between the molecules leading to a smectic potential that is periodic in the direction of the layer normal. Consequently anisotropic ions or dyes will tend to stay in the centre of the smectic layer like the mesomorphic molecules themselves. In addition, both spherical and anisotropic ions may form weak charge-transfer complexes with the aromatic parts of the mesomorphic molecules. Some preliminary results on dye diffusion coefficients indeed indicate that the shape of D_L versus T curve strongly depends on the size of the dye. It seems that small dyes can travel very quickly inside the smectic layers, while for dyes of the size of the molecules or larger we no longer observe the increase of D_L in the smectic B phase. Further investigations and a comparison with self diffusion measurement, for example by neutrons scattering, are necessary to ascertain this last point. Recently some conductivity measurements in smectic phases were reported by Heppke et al. [11], that also fit into this group.

The second group consists of CBOOA, COOBP, COBP. For those compounds σ_\parallel and σ_\perp are monotonic decreasing functions of temperature, but there is apparently no preferential direction for the flow of charges (R takes values close to 1). For these compounds X rays data have shown that the interlayer spacing is larger than the molecular length, and that two molecules are associated within a layer [12]. This is to be contrasted with the first groups where the layer thickness equals the molecular length. Probably this difference in structure of the smectic phase between the two groups could explain the observed differences in transport properties.

Conclusion. We have measured the electrical conductivities σ_\parallel and σ_\perp (respectively parallel and perpendicular to the long axis of the molecules) in the whole mesomorphic range of various compounds. In the smectic A phases usually a strong anisotropy is observed: the conductivity is much larger in the smectic layers than normal to them. This last kind of behaviour was also observed for the dye diffusion coefficients. However, for some smectic A compounds with two molecules per smectic layer the electrical conductivities are no longer anisotropic.

Acknowledgments. It is a pleasure to thank M. Courdille and Th. W. Lathouwers for technical assistance, MM. Marpeau and Legrade for taking the photographs and D. d’Humières for a critical reading of the manuscript.

References

[4] 40.8 was synthetized by LIEBERT, L. and STREZLECKI, L. (Orsay), HEPTAB was prepared by VAN DER VEEEN, J. (Philips Research Labs. Eindhoven), 60.8 50.7 and 50.5 were given to us by SMITH, G. W. and GARDlund, Z. G. (General Motors), COPB was purchased from BDH (England) and COOBP was supplied to us by GRAY G. W. (Hull, England).
[8] σ_\parallel, σ_\perp and R behave the same way in 40.8 from successive synthesis; the absolute values of conductivities are different as is the relative intensity of the increase of σ_\perp at smectic B-smectic A transition.