
HAL Id: jpa-00215871
https://hal.science/jpa-00215871

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

THE WEAK-BEAM TECHNIQUE AS APPLIED TO
DISSOCIATION MEASUREMENTS

D. Cockayne

To cite this version:
D. Cockayne. THE WEAK-BEAM TECHNIQUE AS APPLIED TO DISSOCIATION
MEASUREMENTS. Journal de Physique Colloques, 1974, 35 (C7), pp.C7-141-C7-148.
�10.1051/jphyscol:1974715�. �jpa-00215871�

https://hal.science/jpa-00215871
https://hal.archives-ouvertes.fr


JOURNAL DE PHYSIQUE Colloque C7, suppEment au no 12, Tome 35, -De'cembre 1974, page C7-141 

THE WEAK-BEAM TECHNIQUE AS APPLIED 
TO DISSOCIATION MEASUREMENTS 

Electron Microscope Unit, University of Sydney, 
N. S. W., 2006, Australia 

RBsumB. - La mkthode du faisceau faible en microscopie Clectronique est appliquke & la mesure 
de la skparation des dislocations partielles. On analyse la prkcision des rbsultats expCrimentaux 
obtenus, et on envisage l'ensemble des hypothkses utiliskes pour en dkduire des valeurs de l'bnergie 
de faute d'empilement y. 

Abstract. - The application of the weak-beam method of electron microscopy to the measu- 
rement of the separation of partial dislocations 2 2.0 nrn is discussed. The accuracy of the expe- 
rimental results is analysed, and approximations in obtaining values of the stacking-fault energy, 
y, are outlined. 

1. Introduction. - The weak-beam method of elec- 
tron microscopy [I] is the most powerful method 
available for studying the detailed geometry of indivi- 
dual lattice defects. It enables the positions of dislo- 
cation cores to be determined to an accuracy of better 
than 1 nm, and allows the geometry of dislocation 
interactions to be studied with greatly increased reso- 
lution compared with previous electron microscope 
methods. For this reason, determinations of stacking- 
fault energies using the dimensions of defect configu- 
rations, such as the measurement of the dissociation 
of Shockley partial dislocations and the size of extended 
nodes, can be made more accurately and for smaller 
defects than with other methods. In this paper the 
application of the method to the determination of 
stacking-fault energies by measuring the dissociation 
of Shockley partial dislocations is discussed. 

2. Role of electron microscopy in determining y. - 
A direct method of determining the stacking-fault 
energy in a material which crystallises with the f. c. c. 
or h. c. p. structure is to measure the separation of 
Shockley partial dislocations. Assuming that the 
partials can be regarded as singular Volterra type 
dislocations, i. e. without taking into account their 
core structures, the force per unit length, F, between 
two straight partials can easily be calculated using 
anisotropic or isotropic elasticity ; it is found to be 
F = ~ b i / r ,  where r is the separation of the partials, 
b, is the magnitude of the partial Burgers vectors, and 
K is a function of the orientation of the dislocation 
line and of the elastic constants. In the isotropic 
case [2] 

and a is the angle between the total Burgers vector and 
the dislocation line. The stacking-fault energy, y, is 
then determined from the equilibrium condition 
F =  y. 

In this situation the problem facing electron micro- 
scopy is to determine r, the separation of the partials. 
In normal bright- or dark-field electron microscopy, 
two difficulties arise. Firstly, the image width of a 
dislocation line is approximately 5,/3 where 5, is the 
extinction distance for the reflection concerned. For 
a typical case in metals, this results in image widths 
z 10 nm, which makes it difficult to resolve the 
images of two (partial) dislocations which have 
r 5 10 nm. Secondly, the image position only approxi- 
mately defines the position of the dislocation core. 
These difficulties can be overcome to some extent by 
using computer simulated images (for a review, 
see [3]), but ultimately, when r 5 8 nm (e. g. in Cu, 
Au, Ag, Si, Ge) the images are insufficiently sensitive 
to variations in r to make this method practical. 

A number of alternative methods involving defects 
with more complex geometry have been used to 
overcome these difficulties. In particular, the method 
of measuring the radius of curvature, R (or inside 
dimensions, W) of extended nodes [4, 51 is of advan- 
tage because the images of the partials are more 
easily resolved at the node. However this method is 
subject to a number of difficulties : (i) in practice, nodes 
are rarely s$mmetrical or of a uniform size, making 
it difficult to determine R (or W) ; (ii) the relationship? 
between y and the geometrical parameters of the node 
are not as well-defined as for the separation of 
Shockley partial dislocations. 

3. Images using the weak-beam method. -The 
2 - v weak-beam method of electron microscopy [I] enables 

where ,u is the shear modulus, v is the Poisson ratio the difficulties outlined above to be overcome in two 
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respects. Firstly, each partial dislocation produces an 
image peak whose half-width is approximately 
1.5 nm ; and secondly, the positions of the image 
peaks define the positions of the partials to an accuracy 
of E 0.7 nm. 

Weak-beam images are obtained by forming a 
(dark-field) image using a first order Bragg reflection 
for which the perfect crystal is oriented far from the 
Bragg reflecting condition. This is in contrast to  nor- 
mal images for which the crystal is oriented close to 
the Bragg reflecting condition. The difference between 
the two types of image is seen in figure 1, for disloca- 
tions in silicon. The theoretical principles of the method 
have been analysed and the experimental conditions 
necessary to obtain a given level of accuracy in the 
determination of dislocation core positions have been 
defined [6]. 

4. Accuracy of determination of dislocation line 
positions. - To determine how the positions of image 
peaks (e. g. in Fig. 1) are related to dislocation core 
positions, weak-beam images have been computed 
using many-beam dynamical theory, taking absorp- 
tion into account. Figure 2 shows some examples, and 
it is observed that the image peak lies to one side of the 

DEPTH = 6 4 9 A  

-50 50 Distance from 
dislocation Ilne (A) 

FIG. 2. - Computed weak-beam images of an undissociated 
edge dislocation in copper at various depths (as indicated) 
in a foil of thickness 2 C,. Parameters : g.b = 2 ; g = 220 ; 
6 beam calculation ; 100 kV electrons ; isotropic elasticity ; 
sg = -0.25 nm-1. W is the image peak position predicted by 

eq (4. I), and K by eq. (4.2). 

dislocation core. If we were to assume that the position 
of the image peak lies at the position of the projection 
of the dislocation core on the image plane, then, for 
the cases shown, there would be an error of approxi- 
mately 2 nm in the determination of the core position. 
However this assumption is not necessary, because 
there are a number of ways to predict the displace- 
ment of the image peak from the dislocation core 
position : 

(1) To a first approximation, the image peaks arise 
from regions in the lattice where the strain field of the 
defect bends the lattice planes locally into the Bragg 
reflecting condition. This assumption results in the 
prediction that (for isotropic elasticity) the image 
peak lies at a distance 

- IC 
~,=*(l+--) 2 ns, 2(1 - v), ( 4 1 )  

from the projection of the dislocation core, where 
FIG. 1. - A  constricted dislocation in silicon imaged under 
various diffracting conditions : a) A strong-beam fi dark-field 

rc = 1 for an edge dislocation and 0 for a screw dislo- 

image, in which the constricted segments and node extension are cation) and is the distance of the Ewald 'phere from 
masked, b) A 250 dark-field image showing both the reciprocal lattice point g. This position is marked W 
partial dislocations. c) A weak-beam 117 dark-field image, in figure 2. - .  
giving g. b = 0 for the total Burgers vector, showing the stacking- (2) On the other hand it can be argued that for the 
faults imaged at the extended node and a t  the (( bowed )) dislo- 
cation segments. d) A weak-beam 022 dark-field image, in 

conditions which are used in obtaining weak-beam 

which the partial dislocation with Burgers vectors 4 6  [2?i] is the theory be a good 
out of contrast. (From Ray and Cockayne [l 11 by courtesy approximation for predicting the image peak position. 

of the Royal Society.) If we use the approach of Hirsch, Howie and Whe- 
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lan [7] to describe the average kinematical image 
(i. e. the distance between the centres of the initial 
and final circles on the amplitude-phase diagram), 
then the image peak position (for the case g.  b  = 2 - 
other cases can also be obtained from (7)), is given by 

- 2.1 - 1.0  
X, = --- (edge) ; X, = - (screw) . (4.2) 2 XSg 2 XSg 

This position is marked K in figure 2. 
To determine which, if either, of these equations 

gives a satisfactory description of the distance of the 
image peak from the projection of the dislocation line, 
the positions predicted by the two equations were 
compared with images such as those in figure 2. It 
was found that for first order reflections with 
I s g  12 0.2nm-I and g . b  < 2 : 

(i) The calculated image peak positions lay between 
the two positions given by eq. (4.1) and (4.2) the 
exact position of the peak depending on foil thickness 
and dislocation depth. 

(ii) For this value of I sg 1 the difference between 
X, (eq. (4.1)) and X, (eq. (4.2)) is about 1 nm so 
that either equation can be used to deduce the position 
of the dislocation core to an accuracy of x 1 nm 
(for I sg 1 2 0.2 nm-I). 

These conclusions are supported by figure 3, where 
the computed peak positions for undissociated edge 

FIG. 3. - Computed weak-beam image peak positions for edge 
and screw dislocations in copper. The peak positions lie between 
the positions predicted by eq. (4.1) (W) and (4.2) (K). Parame- 
ters : I g.b 1 = 2 ; 6 beam calculations ; 100 kV electrons ; 

isotropic elasticity. 

4FOlL 

and screw dislocations in copper are plotted as a 
function of foil thickness. W and K are the peak 
positions predicted by equations (4.1) and (4.2) res- 
pectively. (The relationship between these equations, 
and the approximations involved in their derivation 
from the dynamical theory, have been discussed by 
De Ridder and Amelinckx [8] and Cockayne [6].) In 
figure 4 (D. Saldin unpublished) images have been 
calculated for two diffraction geometries (see figure 

u 
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FIG. 4. - A  plot of the weak-beam image peak positions as 
a function of foil thickness for an undissociated edge dislocation 
in copper. It is seen that the peak position lies between the 
positions predicted by eqs. (4.1) (XW) and (4.2) (XK). Parameters : 
I g. b / = 2 ; 6 beam calculation ; 100 kV electrons ; isotropic 
elasticity. Curve 1, dislocation depth = 2.20 5, ; g = 2% ; 
sg = - 0.24 nm-1 ; Curve 2, dislocation depth = 1.56 5, ; 
g = 2% ; sg = -0.25 nm-1 ; Curve 3, dislocation depth 

= 2.2 5, ; g = 220 ; sg = + 0.24 nm-1. 

THICKNESS Y 

( $220 ' K W 
5 0  
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caption) and the image peak positions plotted as a 
function of foil thickness. For both diffraction geome- 
tries, the image peak position lies (effectively) between 
X, and X,  and is seen to vary periodically with foil 
thickness (period = 0.095 5,, ,  x I / /  sg 1). (This periodi- 
city can be compared with the beat frequency 
between Bloch waves on branches 2 and 4 of the 
dispersion surface, numbering from the top of the 
dispersion surface.) 

These considerations lead to the conclusion that for 
/ sg I 2 0.2 nm-' the weak-beam image of a disloca- 
tion with g.b  < 2 is : 

(i) Close to ( 5  2 nm from) the projection of the 
dislocation core ; 

(ii) Sufficiently narrow ( x  1.5 nm at half height) 
to enable its position to be accui-ately defined expe- 
rimentally ; 

(iii) At a position which is relatively insensitive 
(to w 1 nm) to foil thickness and dislocation depth, 
and given to an accuracy of better than 1 nm by 
eq. (4.1). 

The insensitivity of the image peak position men- 
tioned in (iii) above is governed by a restriction on 
w (= sg <,), and the criterion I w I = / sg 5, 1 2 5 
appears to be a minimum requirement in this regard [6]. 
In summary it can be stated that, for dislocations, the 
use of eq. (4.1) for analysis of first order weak-beam 
images with g o b  < 2 will give an accuracy of better 
than 1 nm for determining dislocation core positions 
provided I sg 1 2 0.2 nm-' and, simultaneously, 
I ~ I  = l s g t g i  a 5. 

5. Measurement of Shockley partial separations. - 
With this appreciation of the accuracy of weak- 
beam images for determining dislocation core positions, 
we can now consider its application to determining 
partial separations. We consider the dislocation reac- 
tion in an f. c. c. material 



C7-144 D. J. H. COCKAYNE 

for an edge dislocation parallel to [I121 in a foil with 
normal [I 111. We have g. by = g. b5 = 1 for both 
partials if g = 220, where bi and b; are the Burgers 
vectors of the partial dislocations. There is then no 
stacking-fault contrast. As in the case of an undisso- 
ciated dislocation, we can predict that there will be 
two image peaks, one close to each of the partials, and 
this is in accord with earlier kinematical calcula- 
tions [9]. The prediction is verified for partial separa- 
tions 2 2.0 nm by computed many-beam images 
(examples of which are shown in figure 5). In general 
one partial shows a higher intensity peak than the other, 
because of the asymmetry of the strain field between 
and outside the partials, the relative intensities of the 
two changing with the sign of the g-vector. 

From figure 5 and similar images, it is evident that 
the partial separation A can be equated with the 

FIG. 5. - Computed weak-beam images of a dissociated edge 
dislocation in copper lying at depth ~ 5 2 0  in (111) foils of various 
thickness, T, as indicated. Ware the image peak positions pre- 
dicted using eq. (5.1). The images are for 

1 -  1 -  1 - -  1 
g = 220, b = - [110] + - [I211 f - [211], u = - [112], 

2 6 6 \I3 
Is, I = 0.2 nm-1 and unit incident beam intensity. 

image peak separation A,,, to an accuracy of better 
than x 1.0 nm. However we can identify two effects 
which cause A,,, and A to differ : 

(i) The image peak positions and A,,, vary about 
mean values with dislocation depth and foil thickness. 
This can be overcome to a great extent by taking an 
average over images for different thicknesses and 
defect depths. 

(ii) There is a difference between A and the mean 
value of A,,, due to the fact that the mean positions of 
the image peaks are not equidistant from the respec- 
tive dislocation cores. A method for allowing for this 
is to make the assumption discussed above, that the 
image peaks occur for those positions of the lattice 
where the strain field orients the lattice into the Bragg 
reflecting condition for the particular reflection used 
to form the weak-beam image. This criterion corres- 

ponds to the statement that the image taken in a 
reflection g will have an intensity peak at any point in 
the image corresponding to a column in the crystal 
within which [s, + (d/dz) (g.R)] = 0 at a turning 
point of (d/dz) (g.R), where R is the lattice displace- 
ment in the column. 

As an example of this analysis, we consider the 
coordinate system shown in figure 6 for which 

([lo], p. 251), since g.(bP A u) = 0, where 

R =  Ry+ RE. 

FIG. 6.  - Coordinates used in text to describe the displacement 
at point P. 

The turning point of (d/dz) (g.R) for any particular 
value of x occurs at z = 2,. The condition that 

at a turning point of (d/dz) (g. R) then gives 

since g. bI; = g. b$. The two solutions for x, which are 
the predicted positions of the two weak-beam image 
peaks, are 

x = (2 + cA f J(4 + c2 A2))/2 c (5.1) 
where 

and the separation of the peaks is 

In typical cases the difference between A,,, and A is 
less than 0.5 nm. The same approach can be applied 
for other dislocation geometries and diffracting condi- 
tions. In particular, for the case of the above disloca- 
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tion with b = 3 [llo] but in screw orientation, 
eqs. (5.1) and (5.2) apply with c = - sg/(g. bP/2 n). 

Numerous computed images of dissociated dislo- 
cations in copper and silicon in orientations from 
screw to edge, and at various depths in foils of thick- 
ness from 5,  to 6 <,, have verified that the application 
of eq. (5.2) is useful in correcting for the small syste- 
matic difference between A,,, and A when A 2  2.0 nm. 
For example, many-beam calculations were performed 
for the geometry outlined above for the 220 systematic 
reflections in Cu at 100 keV incident electron energy 
and with a nominal partial separation A = 5.0 nm. 
Various thicknesses of crystal and depths of disloca- 
tion were considered. In all computed images where 
two image peaks were observed (and occasionally only 
one peak is observed due to the dependence of the 
peak intensity on foil thickness and dislocation depth) 
their separation fell within the range A,,, = 5.7& 0.5 nm 
for s= -2.25 x 10-I nm-'. The substitution of these 
values in eq. (5.2) with v = 0.3 gives A = 5.02 nm 
which is in good agreement with the value A = 5.0 nm 
used in the model. 

6. Experimental details. - To obtain weak-beam 
images the experimental precautions relevant to all 
high resolution studies are necessary i. e. the dark- 
field reflection must be aligned axially in the objective 
lens to minimise the effect of aberrations, and the 
image must be free from astigmatism and movement. 
In practice, weak-beam images require exposure times 
in excess of 8 (2nd often z 30) seconds, and this 
imposes severe requirements on image and specimen 
stability. It also means that the image intensity is 
extremely weak, making focussing difficult. This 
difficulty can be overcome to some extent if a beam 
deflecting system with two or more channels is availa- 
ble. By arranging one channel to carry the weak-beam 
image and one to carry the bright-field image, the 
focal conditions can be set using the bright-field image. 
If the bright-field and weak-beam channels have both 
been accurately aligned, it is found experimentally that 
the weak-beam image is in good focus for these same 
focal conditions. (Of course the diffracting conditions 
for the two images are not the same, but this does not 
effect the focus.) 

The general restrictions on the diffraction conditions 
have been discussed in 5 4 primarily for the case of 
dislocations. It has been pointed out that the diffrac- 
tion conditions chosen depend upon the accuracy 
required in the analysis. But the optimum conditions 
of the microscope capabilities are met with : 

(i) 1 s, 1 2 0.2 nm-' (for g.b < 2). 
(ii) I w l  = Isg<, I 2  5. 
(iii) No other reflections (systematic or non-syste- 

matic) strongly excited. 

To obtain a particular value of I s, I the diffracting 
conditions will vary for different materials and reflec- 
tions. In general it can be shown geometrically that 

SILICON \ / 

FIG. 7. - The diffracting conditions in copper (a) and silicon (b) 
necessary to obtain I szzo I = 0.2 nm-1 for 100 kV electrons. 

sg = (1 - n) g2/2 K where K = 111 and the reflection 
ng is satisfied (where n need not be integral). For 
example, for 100 kV electrons in copper, an image 
taken with the reflection g = 220 has 

and 2 K = (210.0037) nm-I. If we require 

this results in 

These are the diffracting conditions shown in figure 7a. 
But in the case of silicon the same value of I s,,, I 
requires the diffracting conditions shown in figure 7b. 
The experimental procedure is then as follows : 

a) Decide which reflection g is to be used to form 
the weak-beam image. For the case considered in 
5 5, this involves determining for which < 220 > 
reflection g.b = 2. This can be done using standard 
contrast techniques ([lo], p. 254). 

b) Determine what the Kikuchi pattern will look 
like when the conditions (i) and (ii) above are satis- 
fied for the reflection g. 

c) Align the microscope for high resolution micro- 
scopy for the reflection g ; e. g. rotation centre, astig- 
matism. 

d) Tilt the specimen to obtain the correct diffraction 
conditions as determined in (b) above, with the 
reflection g on the optic axis. 

e) Make small adjustments to the specimen orien- 
tation so that no reflections are strongly excited. 

f) Attempt to focus the (weak-beam) dark-field 
image. If this is too difficult, use the bright-field image 
as discussed above. 



g) Expose the plate. Do not underestimate the expo- 
sure time required : a trial image which gives an over- 
exposure will at least show whether there is anything 
to be seen, and whether resolution is limited by 
drift, etc. Exposure times of 30 seconds are not 
uncommon, although 8 to 15 seconds are usually 
sufficient. 

FIG. 8. - A weak-beam 2% dark-field image of a 30' disloca- 
tion in silicon. The separation of the peaks in the image is 4.8 nm, 
corresponding to a partial dislocation separation of 4.5 nm. 
(From Ray and Cockayne [25] by courtesy of the Philosophical 

Magazine.) 

7. Determination of y. - To obtain values of y 
the separation of any pair of partial dislocations such 
as that shown in figure 8 can be used, substituting it 
into the equations discussed in § 5. However accuracy 
is gained by fitting the experimental separations for 
a range of dislocation line orientations with theoretical 
curves derived either from isotropic elasticity, or 
preferably from anisotropic elasticity. In figure 9, an 
example is shown for dissociated dislocations in silver, 
from which a value y = 16.3 f 1.7 mJ m-2 was 
determined 1171. Values for y in other materials deter- 
mined in this way are listed in table 1. 

In choosing dislocations for analysis, it is important 
that regions of dislocation near the foil surfaces be 
avoided [16]. This i's because of possible influences of 

l , > t a . 2 . - *  
30 6 0 90 0" 

SCREW EDGE 
DISLOCATION ORIENTATION 

FIG. 9. - Experimental values of partial dislocation separations 
A in silver, plotted as a function of dislocation line orientation 8. 
The full curves are computed using anisotropic elasticity theory. 
The dashed lines indicate theoretical separations based on a 
Peierls model for the core. ( ~ r o m  Cockayne, Jenkins and 
Ray [17], by courtesy of the Philosophical ~agazine.) 

Material y (mJ m-2) Reference 
- - - 

Ag 16.3 + 1.7 1171 
cu 41 f 9 1171 
Cu 4 1 [I61 
Au 32 + 5 1211 
Si 51 & 5 1111 
Ge 60 8 [221 

the surfaces not only on the separation of the partials 
but also on the form of the weak-beam image. 

8. Stackingfaults. - 8 . 1  WEAK-BEAM IMAGES. - 
The conditions for obtaining stacking-fault contrast 
using large I sg I are, of course, the same as for using 
sg z 0, viz g.R # integer where R is the displacement 
vector of the fault. However, for inclined faults the 
depth periodicity of stacking-fault fringes for large 
I sg I is approximately I sg 1-l. Consequently inclined 
faults can appear as narrow closely spaced fringes 
while faults lying parallel to the foil surface show 
contrast which is sensitive to the fault depth. For a 
small region of fault bounded by a partial dislocation 
line, the image when sg w 0 is often dominated by the 
influence of the strain field of the partial. The use of 
large I sg I can provide a means of observing the fault 
image because of the diminished width of the image 
of the partial dislocation El21 and regions of fault 
w 5 nm in size can be imaged in this way. 

8 . 2  NATURE OF FAULTS. - TO determine the nature 
of faults between partial dislocations (extrinsic or 
intrinsic) it is necessary to define the order in which 
the partial dislocations occur. For example, for the 
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case considered in $ 5, a direction is assigned to the 
dislocation line, and the sense of b can then be deter- 
mined by taking bright-field images under the condi- 
tion s, > 0. The Burgers vectors of the individual 
partials can then be identified by taking weak-beam 
images using.the appropriate reflections (e. g. Fig. 1). 
With a knowledge of the orientation of the Thompson 
tetrahedron in the specimen (obtained from the 
Kikuchi pattern), the intrinsic or extrinsic nature of the 
fault can then be determined (for an example see 
ref [Ill). 

9. Approximations. - When using the weak-beam 
method to determine y, a number of approximations 
in various aspects of the theories used require examina- 
tion. 

9 .1  COLUMN APPROXIMATION. - The scattering 
theory used to compute the images for testing the 
accuracy of eq. (4.1) contains several approximations. 
The most important of these is the column approxi- 
mation, and this approximation may be under severe 
strain for weak-beam images since the part of the 
image which is of most interest arises from regions 
close to the dislocation core. Howie and Sworn 1131 
have shown that images computed without the 
column approximation have certain features which 
do  not appear in images computed with the column 
approximation. It is generally assumed that calcula- 
tions performed without the column approximation 
will more accurately describe the experimental situa- 
tion (but see [14]) and consequently the use of images 
calculated with the column approximation for inter- 
preting these particular features will lead to difficulties. 
However at the level of resolution of experiments 
performed to date (e. g. partial separations 2 2 nm) 
the calculations of Howie and Sworn 1131 suggest that 
no important errors are introduced by this approxi- 
mation (for a detailed discussion, see 1151). 

9.2 ELASTICITY THEORY. - AS indicated in 5 7, 
to obtain y from experimental measurements of r, 
anisotropic elasticity should be used. However to 
obtain v from the experimental images, a difference 
between the observed peak separations and the partial 
separations is generally allowed for by using eq. (5.2). 
This equation is derived using isotropic elasticity, and 
for anisotropic materials should be more properly 
derived and examined using an expression for the 
anisotropic strain field. Stobbs and Sworn [16] have 
investigated the error involved for the case of copper 
by computing images for both anisotropic and iso- 
tropic elasticity theory. They concluded that for 
copper, (i) the effect of anisotropy upon the observed 
peak separation, A,,,, is unimportant, and (ii) the 
relationship between A,,, and A given by eq. (5.2) is 
accurate to better than 10 %. 

9.3 EFFECT OF CORE STRUCTURE. - The ability 
of the weak-beam method to resolve Shockley partial 

dislocations having separations approaching 2 nm 
means that the influence of dislocation cores may 
become appreciable. The experimental curve of partial 
separation as a function of dislocation line orientation 
proves of particular interest for copper, because in this 
material the Shockley partials have a separation of 
approximately 2 nm near screw orientation. At such 
a separation, there is the possibility that overlap of the 
dislocation cores may produce deviations from sepa- 
rations predicted by continuum elasticity theory using 
unextended cores. Indeed the experimental results led 
to the observation that the value of y deduced from 
the partial separations could be sensitive to the dislo- 
cation core model used [17]. The deviations from 
continuum elasticity theory should be most appre- 
ciable for dislocations near screw orientation, and 
suggestions of a deviation of the experimental values 
near screw orientation from those predicted by aniso- 
tropic elastic continuum theory have been detected [16]. 
The possibility of interpreting these experimental 
results in terms of particular core models has been 
discussed 118, 19,201, and the influence of core models 
on the value of y obtained from a particular partial 
separation has been investigated 1201. From this last 
study it was deduced that the core structure of partial 
dislocations could lead to either a larger or smaller 
separation than the separation, r,, expected for the 
partials if they were regarded as singular dislocations, 
depending on the core parameters. This effect may 
become very pronounced if the width of the cores is 
comparable with r,/2. For example, in the framework 
of the model used in the study, and assuming reaso- 
nable values of the core parameters, it was shown that 
the stacking-fault energy in Cu derived from the 
measured partial separation could be between 31 and 
50 mJ m-'. 

10. Discussion. - In this paper, only the disso- 
ciation of Shockley partials has been discussed in any 
detail. The closely related case of the dissociation of 
superlattice dislocation in ordered alloys has been 
studied both for twofold 1231 and fourfold 1241 
dissociations. The latter case involves measuring the 
separations of superlattice dislocations and the deter- 
minations of two antiphase boundary energies, and 
the experimental procedure and analysis, using weak- 
beam images, is particularly interesting. 

Many other arrangements of interacting dislocations 
and small defects suggest themselves as amenable to 
the determination of stacking-fault energies using 
weak-beam images. With brighter electron sources, the 
use of larger values of I s, j will be possible, and more 
accurate measurements may result. However, even 
with present measurements, the influence of core 
structures effects the value of y determined from the 
experimentally measured partial separations. This 
becomes particularly important for separations 
5 2.0 nm, but for such small separations many other 
approximations in the analysis become important. 
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