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APPLICATION OF HIRST'S THEORY TO PHONON RELAXATION ; 
MOSSBAUER LINESHAPE IN THE PRESENCE 

OF RELAXATION BETWEEN TWO ELECTRONIC KRAMERS DOUBLETS 

C. CHOPIN, F. HARTMANN-BOUTRON and D. SPANJAARD 

Laboratoire de Physique des Solides (*), UniversitC Paris-Sud, 91405 Orsay, France 

RCsum6. - Nous examinons dans quelles conditions la theorie de relaxation de Hirst peut btre 
appliquke de manikre simple aux processus de relaxation par les phonons (hypothkse du spectre 
blanc, symktrie locale elevke). Nous etudions ensuite I'influence, sur la forme de raie Mossbauer, 
des processus de relaxation du type Orbach, qui mettent en jeu des niveaux intermkdiaires rkels. 

Abstract. - We investigate the conditions under which Hirst's relaxation theory can be applied 
in a simple way to phonon relaxation processes (white spectrum approximation, high local symmetry). 
We then study the influence, on the Mossbauer lineshape, of the Orbach type relaxation processes, 
which involve real intermediate states. 

1. Application of Hirst's theory to phonon relaxation. 
- Hirst's relaxation theory has met with great success 
in the interpretation of the Mossbauer relaxation 
spectra of paramagnetic impurities in metals [I, 21. The 
simplest case is that of an isolated electronic level with 
an effective electronic spin S and a hyperfine structure 
AI.S, the relaxation of S being due to its coupling 
- 2 JaS. s with the conduction electrons. Except at 
very low temperatures, this interaction satisfies the 
white spectrum approximation, and in addition it is 
isotropic. This leads to a simple situation of spherical 
relaxation. In that case, it is found that the whole super- 
relaxation matrix which controls the Mossbauer spec- 
trum can be expressed as a function of a single para- 
meter TI,, the relaxation time of the bare electronic 
spin (without hyperfine structure). 

In ionic crystals paramagnetic relaxation is due to 
phonons. The longitudinal relaxation processes for a 
bare electronic doublet split by an external magnetic 
field (EPR situation) are summarized in ref. 131, 
eq. (10.66) (non Kramers ions) and eq. (10.68) 
(Kramers ions). There are several possible processes, 
direct ones, indirect ones involving virtual intermediate 
states (Raman processes), and indirect ones involving 
real intermediates states (Orbach processes). In addi- 
tion the coupling hamiltonians corresponding to these 
processes are generally not well known. For these 
reasons it appears necessary to restrict the use of 
Hirst's theory to cases with high local symmetry 
(cubic or uniaxial) and to processes which satisfy the 
white spectrum approximation : by this we mean that 
the Fourier transforms J(o) of the lattice correlation 
functions, which come into play in the relaxation 

(*) laboratoire associe au C. N. R. S. 

calculations, must not depend on o for values of o less 
than or comparable with the hyperfine coupling 
constant Alh. This condition excludes : for non- 
Kramers ions the direct process, and for Kramers 
ions both the direct and the first order Raman processes 
(which could be induced by the hyperfine interactions). 

When these conditions are realized, the relaxation 
supermatrix of the atom with nuclear spin is simply 
related to the relaxation supermatrix of the atom 
without nuclear spin (see for example eq. (34) of [2]). 
It remains to reduce the number of parameters which 
enter that last matrix by making use of symmetry 
considerations. However, in the case of Kramers dou- 
blets where there is an arbitrariness in the choice of the 
basis states, this requires some care, for reasons which 
are discussed in reference [3], p. 650-656. Notice that 
the symmetry considerations which follow are valid 
whatever the origin of the relaxation (phonons, 
conduction electrons, . . .). 

2. Symmetry considerations. - 2.1 ISOLATED DOU- 

BLET. - AS an example, let us consider a rare-earth ion 
with total angular momentum J, in a cubic field where 
its lowest electronic state is a Kramers doublet, and 
assume that we can consider only relaxation inside this 
doublet (no Orbach process). Let Ox, Oy, Oz be the 
fourfold cubic axes. We choose the basis functions 
I a > and I a' > of the Kramers doublet in such a way 
that : 

With respect to this basis the matrix elements of J 
between 1 a > and 1 a' > are isomorphous to those of a 
spin S = 4 with respect to the eigenstates I + 4 > 
and I - 3 > of S,. 
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If we now consider the density matrix o of the Kra- 
mers doublet, we also have an isomorphism between a 
and the average value of S : 

On the other hand, the general relaxation equations of 
the average value of a spin S = 3 have the form : 

d 
- < S , >  = D " < S x > + E " < S , > + F " < S z > .  
d t  

(1) 

Since < S > is an average value, it is a physical obser- 
vable. Its relaxation equations must therefore be 
compatible with the symmetry of its neighbourhood. 
In particular, in a cubic symmetry they must be inva- 
riant under the reversal of any of the fourfold axis and 
under interchange of two axis. For this, one must have : 

and 

The relaxation supermatrix then depends only on one 
parameter F" which is equal to - 1/TIswhere Tlsis the 
longitudinal relaxation time which could be measured 
in an EPR experiment. 

Similarly, in the case of uniaxial symmetry the relaxa- 
tion supermatrix will depend only on two parameters, 
F" and D = E'. 

These results are in agreement with eq. (69) of 
reference [2]. In that reference eq. (69) was established 
by expanding the equation of evolution of the density 
matrix up to second order in the relaxation hamilto- 
nian XI .  The present demonstration shows that it is 
indeed valid whatever the order of the relaxation pro- 
cess. In particular, it gives an additional justification to 
the use of a corrected TI, in the presence of Kondo 
effect in YbAu, at temperatures large compared with 
the hyperfin&terval [4]. It also shows that it is pos- 
sible to use eq. (69) of [2] for the inteipretation of 
relaxation spectra involving high order relaxation pro- 
cesses by phonons (for example the second order 
Raman process). However, these results do not apply 
to processes involving real intermediate states, such as 
the Orbach processes. These will be considered in the 
next 3. 

2.2 SYMMETRY CONSIDERATIONS FOR COUPLED 

ELECTRONIC DOUBLETS. - Let us now consider (in 
cubic or uniaxial symmetry) the case of twoLKramers 
doublets A and C with substates I a >, I a' > and 
J c >, 1 c' > defined in the same way as above, and 
assume that these states are coupled with one another 

by relaxation processes. We may define a global den- 
sity matrix for the two doublets, which will have matrix 
elements of the type o,,, a,,, o,,,, o,,,, o,,, o,,, and so 
on. By analogy with the above considerations, it seems 
clear that there will be no coupling by relaxation pro- 
cesses between the diagonal matrix elements a,,, 
o,,,,, act, a,,,, (which have the same transformation 
properties as < J, >) and the low frequency off dia- 
gonal matrix elements a,,,, a,,,, a , , ,  a,,, (which have 
the same transformation properties as < J, >, 
< Jy >). We shall make use of this result below. 

3. Mossbauer lineshape in the presence of electronic 
relaxation between two Kramers doublets. - When the 
electronic ground state A of the Mossbauer ion is 
connected with an excited electronic state C by a real 
process (Orbach process), even if C is only slightly 
populated, this excited state should be included in the 
calculation of the Mossbauer spectrum. 

In order to investigate the effect of this inclusion on 
the Mossbauer lineshape, we have done a prototype 
calculation for a trivalent l7'Yb source (1 = 2, 
I, = 0). In this source, the Mossbauer level (with life- 
time z, = l / r )  is fed by a Beta transition. If we assume 
for simplicity that electronic rearrangement after the 
Beta transition is very fast and that thermal equilibrium 
between A and C is reached before the emission of the 
y-ray 151, the lineshape is given by ([2] eq. (5), [6]) : 

I(w) cc Re I a, < uo, urn I U(p) 1 uo, urn > 1 
u=a.ar 

where a, and a, are the relative populations 
(a, + o, = 1) of the two electronic levels (at tempe- 
ratures where Orbach process is important, there is no 
nuclear orientation) ; p = r / 2  - io ; m is the eigen- 
value of I=. Finally, U(p)  is the Laplace transform of 
the evolution operator in the Liouville representa- 
tion [2] : 

+ Re 

with : X,,, = hyperfine hamiltonian ; X,, = electronic 
hamiltonian (which defines the energies of the Kramers 
doublets), R = electronic relaxation matrix [6] .  For 
the case of interest here, the Liouville matrix W(p) is 
80 x 80. In order to factorize it, we have assumed that 
Yb3+ occupies a site with uniaxial symmetry around 
Oz, and that it has a completely anisotropic hyperfine 
structure in both electronic states : 

a, C < uo, um I U(p) I vo, urn > 
u=c,c' 

v=u,a',c,c' 

X,, = I, + PAjC[3 I: - I(I + I)] (4) 

(2) 

( ~ 2 '  = effective spin of A or C) The matrix of W(p) 
then reduces to five 16 x 16 matrices corresponding to 
the different eigenvalues m of I,. Each of these has the 
form of figure 1. 
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AA CC AC CA 
m 

A A x [p+i1,+2 Wf +2  W,] 
[P + iAm + 2 WT + W, -fm(p)l '+ 0514 - [ Wa + fm(p)I2 

CC + o c c  
Cp+iKm+2 WJ] 

[P + iKm + 2 WJ -g,(p)l + 6514 - [gm(p)] 

AC with 
(5) 

fm(p) = 2 Wt WJ 
[Ip + iK, + 2 W J ]  

CA [p + iK, + 2 WJI2 + 0:/4 ' 

FIG. 1 .  

We must now specify the relaxation matrix R. As an 
example, we shall assume here that the relaxation 
between the two Kramers doublets A and C is due to 
phonons. Then one has transition probabilities [3] : 

W u e ~ - r v s ~  = Wf and ~ " E C - ~ U ~ A  = Wk, 
with WJ/ Wf = exp[(Ec - EA)/kB TI = aA/oC . 

Typically, the energy difference I EA - Ec I between C 
and A is of the order of 50 cm-', corresponding to 
(EB - EA)/h - loi3 rad/s. On the other hand, values 
of Wf around 20 K are of the order of 10'' s-l ,  leading 
to WJ -- 3 x 10" s- I. Since W t ,  WJ < (E, - EA)/h, 
we can apply the secular approximation and decouple 
the evolutions of (AA, CC) from those of (AC, CA). 
It is then sufficient to consider the upper left quarter of 
the matrix in figure 8, that is an 8 x 8 matrix. Finally, 
in this last matrix, we may, by virtue of the symmetry 
considerations of § 3 decouple the evolutions of the 
diagonal matrix elements aa, a' a', cc, c' c' from those 
of the off-diagonal elements aa', a' a, cc', c' c. There 
remains a 4 x 4 matrix represented in figure 2. 

In this matrix, 1, = + pA(3 m2 - I ( I  + 1)) ; 
K, = + PC(3 rn2 - I ( I  + 1)) ; w, = + A$ m ; 
Om = + A; m ; Wt, WJ have been defined above ; 
Wd corresponds to the direct process inside A (that 
inside C is negligible compared with WJ). The standard 
electronic relaxation time inside A, as measured in an 
E. P. R. experiment would be : (1/TIs), = 2 Wd + 2 W1. 

After inversion of the 4 x 4 matrix of figure 2, one 
finds that the final expression I(p)/2 for the lineshape is 
the real part of : 

Notice that in the first line of eq. (9, the term in 
fm(p)/ WJ in the first bracket arises from cross-effects 
of A and C. It is possible to check that the correspond- 
ing contribution to I(p) is indeed symmetric with 
resnect to A and C. 

Comparison of eq. (5) with eq. (79) of [2] shows that 
Orbach relaxation has two main effects : 1) the Moss- 
bauer spectrum is the superposition of two spectra 
corresponding to A and C, 2) for each of these spectra 
the existence of the other electronic level gives rise to 
corrective terms involving Wf and WJ. Due to the 
presence among these terms of the fractions fm(p) and 
g,(p), this correction does not result in a mere altera- 
tion of W, in eq. (79) of [2], but creates a distortion of 
the lineshape. Only when oA 9 oc and when WJ % p, 
Km, Om, are the results of [2] restored. Then 
fm(p) - Wf ; fm(p)lWJ - oclo* < 1 and : 

I(P) - 
2 

One should also notice that for the state A the correc- 
tion associated with the quadrupole effect in the state C 
is of first order in (Km/ WJ), while that associated with 
the magnetic coupling is of second order in (Om/ WJ). 
This clearly arises from the fact that in the case of 
phonon relaxation, starting from one electronic 
substate of the Kramers doublet A, one has equal pro- 
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bability of going to either of the substates of the Kra- In the fast relaxation limit ((1/TIs), >> A,, om) it 
mers doublet C, which have the same quadrupole effect, reduces to : 
but opposite magnetic couplings. 

An interesting particular case arises when 0, 4 sA %@ = Re (oA + oA od x 
and at the same time Km & Am ( E .  F. G. in C much lar- 2 

ger than in A), so that we must keep terms of order 
K,/WJ in the spectrum of A. If we define - 
A,,, = o, 1, + o, K,, then the first line of eq. (5) 
becomes : i. e. the spectrum is approximately the same as if the 

quadrupole coupling of A were replaced by the average 
= Re (o: + 2 oA 03 x 

2 
quadrupole coupling of A and C. Such a situation is 
encountered in Yb-Ethylsulfate around 20-30 K 

x C P + iAm + ( l /T~s )~  . (7) (Borely, Gonzalez-Jimenez, Imbert, Varret, private 

rn [ ~ + ~ ~ m + ( l / ~ l S ) A ]  [ P + ~ X , I + ~ A  communication). 
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