STUDY OF THE MAGNETIC INTERACTION AT 129mXE IMPLANTED IN IRON

To cite this version:

HAL Id: jpa-00215804
https://hal.archives-ouvertes.fr/jpa-00215804
Submitted on 1 Jan 1974

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
STUDY OF THE MAGNETIC INTERACTION AT 129XE IMPLANTED IN IRON

M. VAN ROSSUM, G. LANGOUCHE (*), H. PATTYN, G. DUMONT, J. ODEURS, A. MEYKENS, P. BOOLCHAND (***) and R. COUSSEMENT

Instituut voor Kern- en Stralingsfysika, University of Leuven, Belgium

Résumé. — L’interaction magnétique du 129Xe a été étudiée par l’implantation de 129mXe dans le fer aux doses de 5×10^{14}, 5×10^{15} et 1×10^{16} at/cm2. Les spectres Mössbauer obtenus indiquent une superposition de plusieurs champs magnétiques liés aux atomes de Xe situés dans les différents environnements cristallins. La population relative des sites dépend de la dose d’atomes implantés. Pour le champ le plus important, correspondant au Xe en position substitutionnelle, nous obtenons la valeur $H_{h.o.b.} = 1480 \pm 80$ kG. Nous déduisons également le rapport $g_e/g_o = 0.25 \pm 0.04$.

Abstract. — The magnetic interaction at 129Xe was studied by implanting 129mXe activity in iron foils at a dose of 5×10^{14}, 5×10^{15} and 1×10^{16} at/cm2. The resulting Mössbauer spectra show a superposition of field values corresponding to Xe atoms imbedded at various lattice positions. The relative population of the different sites is found to be dose dependent. For the high field component, arising from the substitutionally implanted Xe fraction, we obtain the value $H_{h.o.b.} = 1480 \pm 80$ kG.

We also deduce the value of the g-factors ratio $g_e/g_o = 0.25 \pm 0.04$.

1. Introduction. — Although the Mössbauer resonance of 129Xe was discovered as early as 1963 [1], little work has been done on the magnetic interaction of this nucleus. This is mainly due to the fact that no known Xe compound exhibits magnetic hyperfine splitting. The only possibility was to apply external magnetic fields on unsplit 129Xe sources or absorbers [2], but the large linewidth of the 129Xe resonance ($2I_{\text{nat}} = 6.8$ mm/s) limits considerably the accuracy of this method.

The ion implantation technique has opened new possibilities in this area, as it allows to make use of the large internal fields which Xe nuclei experience when imbedded in a ferromagnetic lattice. Starting from implanted sources, the hyperfine field of Xe in iron was first deduced from nuclear orientation measurements [3]. However, the analysis of these results suffers from the fact that not all Xe atoms occupy regular lattice positions: the various hyperfine fields arising from different environments cannot be resolved directly in a nuclear orientation experiment [4]. Therefore, a direct study of Xe implantation in iron by Mössbauer spectroscopy became highly desirable.

2. Experimental procedure. — Of the two known Mössbauer isotopes 129Xe and 131Xe, the first one is the more favorable from the experimental viewpoint because of the lower gamma transition energy (39.6 keV compared to 80.2 keV) and of the longer lifetime. In the pioneering experiments of G. Perlow and co-workers [5], the activity was produced from 129I ($t_{1/2} = 1.7 \times 10^7$ y), but for implantation work this procedure has some disadvantages: the implanted ions are I and not Xe, and moreover, the specific activity of 129I is very low. It would therefore be more interesting to start from the isomeric state 129Xe ($t_{1/2} = 8.2$ d) which can be produced by neutron irradiation of 128Xe, but the problem here lies in the very unfavorable 128Xe/129Xe abundance ratio, making it impossible to get highly enriched 129Xe.

We were able to solve this difficulty in a somewhat unusual way, starting from natural I and making use of the reaction

$127I \rightarrow 128I \rightarrow 132I \rightarrow 129mXe \rightarrow 129Xe \rightarrow 129Xe.

Although the amount of stable 129Xe produced is much larger than that of 129mXe, the specific activity is large enough to permit implantation doses lower than 10^{14} at/cm2.

The activity was obtained by irradiation of 150 mg KI during 40 days in a neutron flux of 3×10^{14} neu-

(*) Aspirant N. F. W. O.

(**) On academic leave from University of Cincinnati, Cincinnati, Ohio 45221.
trons/cm². In this way, samples of about 10 mCi of 129mXe were prepared. The sources were implanted by the Leuven isotope separator at an acceleration voltage of 75 kV. All implantations were done at room temperature. The source was moved by a drive system of the Kankeleit type in the constant acceleration mode. The unsplit compound Na$_2$XeO$_6$·2 H$_2$O (obtained from Peninsula Chemical Research Inc., Gainesville, Florida) was used to make an absorber containing 22 mg Xe/cm². Both source and absorber were kept at liquid helium temperature. The detection system consisted of a Xe-filled proportional counter, with a window setting on the escape peaks of the 39.6 keV gamma-ray.

3. Experimental results. — Spectra were recorded from 3 sources, containing respectively 5×10^{12}, 5×10^{13} and 10^{15} at/cm². The observed linewidths are close to $\Gamma = 12 \text{ mm s}^{-1}$, which is about 15% larger than the calculated value for the absorber thickness used. All three spectra show evidence for a high-field component, corresponding to substitutionally located Xe atoms. The field value as obtained from a least-squares fitting is

$$H_{\text{high}} = (1480 \pm 80 \text{ kG}) .$$

This result is in good agreement with the values so far deduced from nuclear orientation [4], and from Mössbauer spectroscopy on 131Xe (H. de Waard, R. L. Cohen, S. R. Reintsema and S. A. Drentje, to be published).

The other main contribution to the spectra comes from Xe atoms at non-substitutional lattice positions. The maximal value of the so-called « low-field component » does not exceed $300 \pm 50 \text{ kG}$, but this field may not be unique. An important point resulting from our measurements is the strong dose-dependence of the population of the low-field sites, as may be seen from figures 1, 2 and 4.

Apart from these main components, it appears necessary to postulate the existence of one or more intermediate fields in order to give a reasonably good fitting of the data. The existence of at least one intermediate field of about $1200 \pm 100 \text{ kG}$ seems very probable. However, the problem of the uniqueness of this intermediate field component is still open and further experiments will be needed to clear up the situation.

Because the nuclei are implanted in a thin foil, one may expect them to show preferential polarization in
the plane of the foil. Therefore, the intensity of the Mössbauer satellites was adjusted in the fit. The obtained values range between $3: 3: 1$ and $3: 3.5: 1$.

In the fitting procedure, the ratio of g-factors g_e/g_0 was left as a free parameter. The best fitting corresponds to

$$
g_e/g_0 = -0.25 \pm 0.04.
$$

The negative sign was deduced from a polarization experiment in which the source was immersed in a magnetic field of 20 kG applied parallel to the observation direction. The resulting suppression of lines 2 and 5 of the high field component leads to the unambiguous location of the $\Delta m = 0$ satellites (see Fig. 3).

Taking $\mu_{sf} = -0.77689 \mu_N$ [6, 7], we obtain for the magnetic moment of the 39.6 keV state

$$
\mu_e = +0.58 \pm 0.1 \mu_N
$$

the error being mainly due to the complexity of the spectra. This value agrees within the error limits with the earlier result of L. E. Campbell et al. [2], who quoted $\mu_e = +0.68 \pm 0.30 \mu_N$ and deduced the positive sign from theoretical considerations. Very recently, a P. A. C. measurement performed by G. Marest et al. [8] yielded $\mu_e = +0.88 \pm 0.26 \mu_N$. The same authors, starting from a weak coupling model for the low lying levels of 129Xe, calculate a theoretical value of $\mu_e = +0.752 \mu_N$.

Acknowledgments. — We thank Prof. Dr. H. de Waard for the communication of some results before publication, and for his continuous interest in this work. We also thank G. Brijs and R. Vanautgaerden for the implantations performed at the Leuven Isotope Separator. One of us (G. Langouche) wishes to thank the N. F. W. O. for financial support.

References