INVESTIGATION OF THE METAL-TO-SEMIMETAL TRANSITION IN NiS BY 61Ni-MÖSSBAUER SPECTROSCOPY

J. Fink, G. Czjzek, H. Schmidt, K. Ruebenbauer, J. Coey, R. Brusetti

To cite this version:

HAL Id: jpa-00215763
https://hal.archives-ouvertes.fr/jpa-00215763
Submitted on 1 Jan 1974

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
INVESTIGATION OF THE METAL-TO-SEMIMETAL TRANSITION IN NiS BY 61Ni-MÖSSBAUER SPECTROSCOPY

J. FINK, G. CZIZEK, H. SCHMIDT and K. RUEBENBAUER

Institut für Angewandte Kernphysik, Kernforschungszentrum Karlsruhe, GFR

J. M. D. COEY and R. BRUSSETTI

Transitions de Phases, CNRS, Grenoble, France

Abstract. — Mössbauer spectroscopy with 61Ni has been employed to investigate vibrational, magnetic and electronic properties of hexagonal NiS in the semimetallic antiferromagnetic and in the metallic, Pauli-paramagnetic phase. Upon transition to the metallic state the recoilless fraction decreases significantly, corresponding to a change of the Debye-temperature by about 20 %. There is at most a small change of isomer shift at the transition. The relative decrease of the magnetic hyperfine field with temperature is proportional to T^2, as expected for single-electron excitations in itinerant antiferromagnets. A decrease of the electric field gradient both with temperature and with increasing content of Ni-vacancies in the antiferromagnetic phase indicates changes of the electronic structure which may promote the transition to the metallic state.

The stoichiometric compound NiS with the hexagonal NiAs-structure exhibits a metal-semimetal transition at $T_1 = 265$ K. The low-temperature phase is an antiferromagnetic semimetal and the high temperature phase a Pauli-paramagnetic metal [1]. The transition temperature depends strongly on the composition as shown in figure 1 and it is suppressed completely by less than 4 % Ni vacancies. Results of Mössbauer effect measurements on NiS samples doped with 57Fe have been published by Coey et al. [2] and Gosselin et al. [3]. Here we report results of Mössbauer spectroscopy with 61Ni in NiS samples as a function of stoichiometry and temperature.

Samples of NiS were produced in the usual way by heating Ni and S in a quartz tube as reported by Trahan et al. [4]. The spectra have been taken with a conventional Mössbauer spectrometer as described by F. E. Obenshain [5]. The velocity was calibrated by measuring simultaneously the hyperfine interaction of 57Fe in iron. The source was a 57FeNi (14 %) alloy. It was irradiated by a 20 MeV proton beam in the Karlsruhe cyclotron giving 61Ni* by the reaction 64Ni(p, α) 61Co1Ni. 61Ni*. With one irradiation 1 or 2 spectra could be taken within 4 h. During all measurements the source was kept at 4.2 K. The

FIG. 1. — Concentration dependence of the transition temperature T_1, the magnetic moment per nickel ion μ_{Ni}, the magnetic hyperfine field H_{hf}, and the quadrupole coupling constant v_Q in NiS. The figure displays relative values, normalized to 1 for $y = 1$. Absolute values for $y = 1$ are $T_1 = 265$ K, $\mu_{Ni} = 1.4 \mu_B$, $|H_{hf}| = 112$ kG, $v_Q = 1.6$ MHz.
The Mössbauer spectra of 63Ni in compounds Ni$_2$S

with $y \geq 0.971$ in the antiferromagnetic phase consist of 12 lines, corresponding to a magnetic dipole and an electric quadrupole interaction, without an indication of an unsplit component as found for 57Fe in NiS [2, 3]. Upon transition to the metallic phase the spectrum abruptly changes to a single line. The presence of an electric quadrupole interaction of about the same strength as in the antiferromagnetic phase cannot be excluded.

We find a strong decrease of the recoilless fraction f at the transition from the antiferromagnetic to the metallic state as shown in figure 2. A least-squares fit of the temperature dependence of the magnetic hyperfine field cannot be explained by magnon excitations. The decrease of the magnetic hyperfine field at $T = 160$ K is several percent, whereas the spin wave model results in a decrease of 10^{-5} at this temperature. The observed change of the magnetic hyperfine field with temperature can be accounted for by single-particle excitations of an itinerant antiferromagnet. Theories using the Hartree-Fock-approximation of Stoner [9], extended to antiferromagnetism by Lidiard [10], or that of Brandt and Gross [11] for collective-electron magnetism with partially split d-bands give a T^2-dependence for the sublattice magnetisation at low temperature. With these theories and our α values fictitious Néel temperatures $T_N = 670$ K for Ni$_{0.995}$S and $T_N = 500$ K for Ni$_{0.971}$S can be extrapolated. The concentration dependence of the magnetic hyperfine field at 4.2 K is shown in figure 1. A linear extrapolation of our data yields a magnetic hyperfine field $|H| = 112$ kOe for stoichiometric NiS.

The magnetic hyperfine field is decreasing more slowly with increasing content of cation vacancies than the magnetic moment per Ni-ion, as determined by neutron diffraction [12].

A point-charge calculation of the lattice contribution to the electric field gradient gives a value which is about an order of magnitude larger than the measured values. The difference can be due to shielding of the ionic potentials by conduction electrons or to a compensating contribution by covalent admixture of sulfur 2p-electrons to the nickel valence states. Whichever of these mechanisms is dominant, it would also tend to reduce the intra-atomic exchange interaction at the absorber temperature could be varied between 4.2 K and 160 K. All spectra were analyzed by a least-squares fit to the full Mössbauer transmission integral with a computer program by J. Burton [6].
nickel ions which is assumed to cause the magnetic order. The observed decrease of the quadrupole interaction with increasing deviation from stoichiometry as shown in figure 1 indicates a strengthening of this mechanism in agreement with the observed decrease of the transition temperature. The observation of a similar decrease of the quadrupole interaction with increasing temperature supports this point of view.

References