INTERPRETATION OF MÖSSBAUER MEASUREMENTS OF DIFFUSIVITY

M. Ron, F. Hornstein

To cite this version:

M. Ron, F. Hornstein. INTERPRETATION OF MÖSSBAUER MEASUREMENTS OF DIFFUSIVITY. Journal de Physique Colloques, 1974, 35 (C6), pp.C6-505-C6-506. <10.1051/jphyscol:19746105>. <jpa-00215716>

HAL Id: jpa-00215716
https://hal.archives-ouvertes.fr/jpa-00215716

Submitted on 1 Jan 1974
INTERPRETATION OF MÖSSBAUER MEASUREMENTS OF DIFFUSIVITY (*)

M. RON and F. HORNSTEIN

Department of Materials Engineering, Technion, Haifa, Israel

Résumé. — Il a été prétendu que l'élargissement de raie, $\Delta \Gamma_m$, mesuré directement dans les spectres Mössbauer à haute température était proportionnel à la diffusivité. Une correction $\Delta \Gamma_{th}$, tenant compte de la diminution de la largeur de raie avec la température, a été introduite. On a montré que ceci rapproche les résultats expérimentaux des valeurs prédites par le modèle de diffusion par saut (2hlr).

On montre que l'élargissement de raie dû à la diffusion peut être détecté à une température plus basse en tenant compte de la correction $\Delta \Gamma_{th}$.

Abstract. — The line broadening, $\Delta \Gamma_m$, measured directly from high temperature Mössbauer spectra has been claimed to be proportional to the diffusivity. A correction, $\Delta \Gamma_{th}$, accounting for the decrease in the line width with temperature, was introduced. It was shown that this brings experimental results closer to the values predicted by the diffusion-jump model 2hlr.

It is shown that diffusive line broadening can be detected at a lower temperature than if the correction $\Delta \Gamma_{th}$ is ignored.

Singwi and Sjölander have predicted that zero-phonon Mössbauer resonance should broaden in proportion to the diffusivity [1]. Mössbauer results have been discussed in terms of the continuous-diffusion and sudden-jump models [2] in view of a number of experimental studies. Experimentally, the line broadening, $\Delta \Gamma_m$, measured directly from high temperature spectra, was claimed to be proportional to the diffusivity. The effect of change in the effective thickness of the measured sample has been ignored, in spite of the fact that samples of considerable thickness have been used in order to overcome the drastic decrease of the f-factor at high temperatures.

The measured width Γ_m of a Mössbauer resonance line in a high temperature absorber experiment, can be considered as consisting of three contributions:

$$\Gamma_m = \Gamma_s + \Gamma_a + \Gamma_{th},$$

where:

Γ_s is the line width of the source,

Γ_a, the line width extrapolated to zero thickness of the absorber,

Γ_{th}, the broadening due to the finite effective thickness of the absorber.

The broadening, Γ_{th}, can be calculated if $f(t)$, the temperature dependence of the f-factor is known.

The second term Γ_a is the intrinsic line width of the absorber and is influenced by processes affecting the lifetime of the nuclear transition; e. g. diffusion.

Therefore, Γ_s is the term which will reflect changes in atomic motion with changing temperature.

Consider a line width measured at a low temperature T_0, for which $f(T)$ reaches practically its highest value, then:

$$\Gamma_m(T_0) = \Gamma_s + \Gamma_a + \Gamma_{th}(T_0)$$

at a higher temperature $T > T_0$

$$\Gamma_m(T) = \Gamma_s + \Gamma_a + \Gamma_{th}(T) \quad \text{holds}.$$

Hence the measured difference in the line width is:

$$\Gamma_m = (\Gamma_s - \Gamma_a^0) + [\Gamma_{th}(T) - \Gamma_{th}(T_0)]$$

with

$$[\Gamma_{th}(T) - \Gamma_{th}(T_0)] < 0$$

hence

$$[\Gamma(T_0) - \Gamma_{th}(T_0)] = \Delta \Gamma_{th} > 0$$

and

$$\Delta \Gamma_m = \Delta \Gamma_{th} = \Gamma_s - \Gamma_a^0.$$

The difference $\Gamma_s - \Gamma_a^0 = \Gamma_D$ is the net intrinsic broadening caused by a change in atomic motion; i.e. by diffusion. It is significant to point out that, if $\Delta \Gamma_m$ is measured and $\Delta \Gamma_{th}$ is calculated using an appropriate procedure [4], both then being plotted as a function of temperature, then at the temperature at which Γ_D starts to deviate from zero, diffusion begins to affect the line width significantly. An accurate estimate of the temperature at which diffusion begins to influence the line width may enable one to lower the temperature at which diffusion is measurable.

(*) This research was sponsored by The National Council for Research and Development of Israel and Elscint Limited, Haifa.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19746105
Curves for I_m^s, I_{th} and I_D vs. $1/T$ were calculated using values taken from data of Knauer and Mullen [3] for the diffusivity of iron in copper and are shown in figure 1. I_m^s is the experimentally measured line width from which I_m and I_a were subtracted:

$$I_m^s = I_m - (I_s + I_a).$$

The sum $I_s + I_a$ was assumed to be equal to ~ 0.20 mm/s.

I_{th}, the contribution to the line width, due to the finite effective thickness, t_a, was calculated on the basis of a linear approximation [4]:

$$I_{th} = 0.27 I_0 t_a \text{ where } t_a = n \sigma_0 f(T)$$

here:

- n, is the number of Fe57 nuclei per cm2,
- σ_0, the resonant cross section,
- $f(T)$, the Mössbauer f-factor for Fe in copper matrix, the temperature dependence of which is known [5].
- t_a, the effective thickness was estimated to be about 10 at room temperature.

The diffusion broadening I_D was calculated from data obtained by tracer diffusion experiments of iron in copper [6], using a Barden-Herring correlation factor of 0.8 and the same formula as used by Knauer and Mullen [3].

Under the conditions represented in figure 1 and with an accuracy of 0.003 mm/s the diffusive broadening can be detected at $\sim 730^\circ$C. On the contrary, if the correction ΔI_{th} is ignored the broadening can be measured, firstly, at about 900°C. The correction ΔI_{th} is seen to increase with temperature.

Finally, the change of t_a with temperature follows the fractional change in the f-factor, therefore for an effective thickness greater than $t_a \geq 10$, the curve I_{th} ($t_a > 10$) will lie parallel to I_{th} ($t_a = 10$) and the corresponding values of ΔI_{th} will also be higher.

The results of Mössbauer diffusivity measurements as given in table I of [3] were corrected for ΔI_{th} and shown in figure 2.

The corrected values are closer to the value of $2 h/\tau$ which was predicted by the diffusive jump model and measured by tracer-sectioning technique. The remaining discrepancy may be related to the non-random state of a 1 % FeCu alloy [7] and other reasons discussed elsewhere [2].

In previous and recent years a number of Mössbauer diffusivity determinations have been published without correcting for ΔI_{th} [8].

References