"Two-photon production of leptons and search of new particles"
V. Budnev, I. Ginzburg, G. Meledin, V. Serbo

To cite this version:

HAL Id: jpa-00215538
https://hal.archives-ouvertes.fr/jpa-00215538
Submitted on 1 Jan 1974

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
c) In the region $s \gtrsim q_1^2, q_2^2/m_0^2$ these combinations are s/q_1^2 and q_2^2/m_0^2.

At $q_2^2/m_0^2 \gg 1$ the dependence on only argument $s/m_0^2 q_1^2 q_2^2$ is left and at $s/m_0^2 q_1^2 q_2^2 \gg 1$ the Regge behaviour takes place.

Two-photon production of leptons and search of new particles

V. M. Budnev, I. F. Ginzburg, G. V. Meledin, V. G. Serbo

Institute for Mathematics, Novosibirsk (USSR)

Abstract. — This review is devoted to the following problems:

1. Some little-known applications and effects connected with the two-photon $e^+ e^-$-pair production: energy losses of fast muons in the matter; the investigation of π and K form factors; the possibility to calibrate accelerators with the colliding $p p$, $\bar{p} p$ or $e p$ beams; measuring the high energy photon polarization, measuring the real part of proton Compton effect, etc.

2. Some processes of high order in α for the electron storage rings having cross section high enough, two $e^+ e^-$-pair production ($ee \rightarrow e e^+ e^- e^-$); parapositronium production; production of photons with MeV energy for large emission angles.

3. The search of new particles: intermediate vector mesons, Dirac's monopols and massive leptons.

4. Some questions of the two-photon massive μ-pair production.

Parton model for scattering

L. I. Perlovsky and E. P. Heifez

Institute for Mathematics, Novosibirsk (USSR)

Abstract. — The parton model for the process $\gamma \gamma$ into hadrons is considered. The total cross section in the kinematic region $s \gg |q_1^2|, |q_2^2| \gg 1$ GeV2 is obtained to be a function of a single variable: $\sigma_{\gamma \gamma} = \varphi(s/q_1^2 q_2^2)$, $s = 2 q_1 q_2, q_1, q_2$ — the photons, 4-momenta.

The two-photon process for particle production in colliding beam experiments (*)

G. Grammer, Jr. and T. Kinoshita
Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14850, USA

Abstract. — A comparison is made, for various two-photon processes ($ee \rightarrow e e^0, e e^+ \mu^-, e e^+ \pi^-$), between an exact calculation on the one hand and two alternative forms of the equivalent photon approximation (namely, the Low formula and the Dalitz-Yennie formula) on the other hand. Angular distributions of the particles produced are considered, as well as total cross sections.

Corrections to equivalent photon approximation for two-photon processes in colliding beams (*)

K. Subbarao
Joseph-Henry Laboratories, Princeton University, Princeton, New Jersey 08540, USA

Abstract. — The cross section for the two-photon process $ee \rightarrow e e^\gamma$ in colliding electron beams, in the limit $E \rightarrow \infty$ with E^2/s fixed (E being the energy per beam of the colliding electrons of mass m, and \sqrt{s} the invariant mass of the state Γ) is well known to have a leading term of order $(\ln 4 E^2/m^2)^2$. This leading term is given correctly by the well-known Weizsacker-Williams approximation or the equivalent photon approximation. There are sizeable corrections coming from non-leading terms of which the first one, namely, the term of order $(\ln 4 E^2/m^2)$ has been obtained for an arbitrary hadronic final state Γ. The approximations made in getting the Weizsacker-Williams result and the correction terms due to each of them have been exhibited.

Two-photon processes for particle production at high energies (*)

H. Terazawa
The Rockefeller University, New York, New York 10021, USA

Abstract. — The literature of the past three years on the two-photon process for particle production $e^+ e^- \rightarrow e^+ e^- \gamma^* \rightarrow e^+ e^- \gamma^* \rightarrow e^+ e^- X$