BUBBLE CHAMBER WORK ON NON-DIFFRACTIVE WASI-TWO-BODY REACTIONS
G. Otter

To cite this version:
G. Otter. BUBBLE CHAMBER WORK ON NON-DIFFRACTIVE WASI-TWO-BODY REACTIONS. Journal de Physique Colloques, 1973, 34 (C1), pp.C1-298-C1-300. <10.1051/jphyscol:1973138>. <jpa-00215218>

HAL Id: jpa-00215218
https://hal.archives-ouvertes.fr/jpa-00215218
Submitted on 1 Jan 1973

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A quasi-two-body reaction is completely described by the s- and t- dependence of all its amplitudes, but this detailed information is normally not available. In most well-known processes only the s- and t-dependences of the cross-section and of the density matrix elements of the resonances involved are experimentally known. New results on the s- and t-dependences of some reactions are reviewed first, followed by a discussion of some papers dealing with other subjects.

1.- s-DEPENDENCE. The ABCLV-collaboration studied the energy dependence of some $K\bar{p}$ many-body-reactions at 6, 10 and 16 GeV/c \([1]\). The reactions were divided into subreactions depending upon which particles go forward or backward in the cm system. The method, referred to as "binary LPS", is a generalisation of a method used by Morrison \([2]\), to study quasi-two-body reactions. The cross-sections of the various subreactions were parametrised by $\sigma \propto p_{\text{lab}}^{-n}$, where n is empirically related to the quantum numbers exchanged between the forward and backward going particles and the values found are very similar to those obtained from quasi-two-body reactions.

The Tel-Aviv-Heidelberg collaboration investigated the energy dependence of the reactions $K^{0}_\Lambda \rightarrow K^{+} \pi^{+} p$, $E^{0}_\Lambda \rightarrow K^{+} \pi^{+} p$ in the incident momentum range 0.8 to 3.0 GeV/c \([3]\). They were especially interested in the production of the systems $K^{890} N$. Using the results of this experiment and some already existing $K^{+} \rightarrow K^{890} N$ data, an isospin analysis of $KN \rightarrow K^{890} N$ and $KN \rightarrow F^{890} N$ was carried out. In both reactions the $I = 0$ part is larger than the $I = 1$ part. The interference in the second reaction is compatible with zero whereas it is very large and negative in the first reaction (fig.1).

2.- t-DEPENDENCE. BNL submitted a paper on a systematic study of the reactions $\pi^{+} \rightarrow \rho^{+} \pi$ and $\pi^{+} \rightarrow \rho^{0} \pi$ at 6 GeV/c \([4]\). An isospin analysis shows that there is no interference between the amplitudes for $I = 0$ and $I = 1$ exchange. The $I = 0$ part if well described by ω-exchange and the $I = 1$ part if dominated by π-exchange. Using a simple model for π-exchange (a modification of the Williams model \([5]\)) and Harari's dual absorption model for ω-exchange \([6]\), an amplitude analysis for this process is carried out.

Bouchez and Mallet presented preliminary results from an amplitude analysis of the reaction $\pi^{+} p \rightarrow \rho^{0} n$ and $\rho^{0} p$ at 3.9 GeV/c \([7]\). The amplitudes and their relative phases have been determined as a...
Eisenberg et al. investigated the quasi-two-body reaction \(\pi^+ p \rightarrow p^0 \Delta^{++} \) at 5 GeV/c in a large statistics experiment [8]. They found a very strong forward peak in the \(d\sigma/dt' \) with a slope of \(22 \pm 2 \) GeV\(^2\)/t' (which comes from the dominance of \(\pi \)-exchange in this process), but no other structure was found in this distribution. A strong dip at \(|t'| = 0.2 \) GeV\(^2\) was observed in the helicity-flip-1 natural parity exchange part; it is probably due to \(A_2 \) exchange.

The reaction \(\pi^+ n \rightarrow \omega p \) at 4 GeV/c was studied by the Durham-Birmingham-Rutherford collaboration [9]. From the density matrix elements they concluded that both B and \(\rho \)-exchange are needed. Conclusions on detailed results may however be modified since no corrections were applied for the 30% background under the \(\omega \).

Karshon et al. [10] investigated the reaction \(\pi^+ p \rightarrow B^+ p \) at 5 GeV/c which was not very well studied up to now. There are indications that \(d\sigma/dt' \) has a shoulder at \(t' = -0.2 \) GeV\(^2\), and that \(\rho_{00} \)
\(d\sigma/dt' \) has a dip here (in agreement with a corresponding \(\pi^- p \) experiment at similar energies [11]). This result can be explained by the dominance of \(\omega \)-exchange. The suppression of \(A_2 \) exchange is also apparent in a study [10] of the reaction \(\pi^+ p \rightarrow B^0 \Delta^{++} \) with a five times smaller production cross section than for the final state \(B^+ p \). However, the Rochester group finds a strong \((\pi A_2 B) \) coupling in the reaction \(\pi^- n \rightarrow B^- \Delta^0 \), studied in \(\pi^- d \) interactions at 7 GeV/c [12].

The Toronto group investigated \(\pi^+ p \rightarrow \pi^0 \Delta^{++} \) and \(\pi^+ p \rightarrow \pi^0 \Delta^+ \) at 5.45 GeV/c [13]. Both reactions exhibit cross-sections with a similar power law \(n = 1.59 \pm 0.09 \) for \(\pi^0 \Delta^{++} \) and \(n = 1.57 \pm 0.15 \) for \(\pi^0 \Delta^{++} \). The first reaction is dominated by \(\rho \) and the second by \(A_2 \)-exchange.

The CERN-Birmingham-Brussels-Mons-Saclay-Paris collaboration studied systematically the reaction \(K^+ p \rightarrow K^{*0} \Delta^{++} \) from 4.6 to 16 GeV/c [14]. \(d\sigma/dt' \) has a strong forward peak. This and the large value of the density matrix element \(\rho_{00} \) in the forward direction (see fig.2) indicate dominance of \(\pi \)-exchange. Fits to \(d\sigma/dt' \), \(\rho_{00} \) and \(\rho_{11} \) - \(\rho_{11} \)-1 (in either the Jackson or helicity frame) give an effective Regge-trajectory with an intercept that is
much too low ($\alpha = -.24 \pm .05$) and a slope that is too flat for a π-Regge pole.

Two other submitted papers study simple one-pion-exchange for the reactions $np \rightarrow \Delta^- \Delta^{++}$ at 3GeV/c [15] and $pp \rightarrow \Delta^- \Delta^{++}$ at 5.7 GeV/c [16]. Both experiments found a strong forward peak consistent with x-exchange. Statistical tensors calculated for the double decay were inconsistent with the predictions of simple OPE. This indicates that absorption is needed to explain the data.

Backward production of π^0, ω^0 and ρ^0-mesons was studied by the Rutherford-Birmingham-Durham collaboration [18]. In the case of ρ and ω, the results were compared with vector-dominance model predictions. A large negative interference between the ω and ρ-amplitudes was found to be necessary to obtain agreement with the model at least for $|t| > 0.5$ GeV2.

3. MISCELLANEOUS. - In this part I would like to mention two items. Tenner et al. [19] submitted a paper in which the reactions $K^*p \rightarrow K^{*0} \pi^0p$ are described in terms of Veneziano amplitudes. Data at 14 different momenta from 2.7 to 12.7 GeV/c have been compared with the model calculation and the agreement is quite good.

Another paper makes a comparison of the quark model with the reactions $\pi^0p \rightarrow \omega$ and $\rho^{0\Delta^{++}}$ at 5 GeV/c [20]. The Class A quark model relations are satisfied within statistics for $\pi^0p \rightarrow \omega \Delta^{++}$ (even at large momentum transfers), but there are deviations from the model for the $\pi^0p \rightarrow \rho\Delta^{++}$ data.

REFERENCES

[1] GÖSSLER (H.), et al., Aachen-Berlin-CERN-London Vienna collaboration, paper 80
[3] ALEXANDER (G.) et al., Tel-Aviv-Heidelberg collaboration, paper 77
[4] GORDON (H.) et al., BNL, paper 19
[7] BOUCHEZ (J.) and MALLET (J.), paper 289
[8] RIENZENBERG (Y.) et al., Weizmann Institute, paper 312
[10] KARSHON (U.) et al., Weizmann Institute, paper 313
[11] CHALOEPEA (V.), private communication
[12] COHEN (D.) et al., paper 93
[13] BLOODWORTH (I.J.) et al., Toronto, paper 180
[15] ANSORGE (R.E.) et al., Cambridge, paper 249
[16] ATHERTON (H.W.) et al., CERN-Prague collaboration, paper 254
[17] CHARRIERE (G.) et al., CERN-Munich-Mons-Brussels collaboration, paper 292
[18] CHARLESWORTH (J.A.) et al., Rutherford-Birmingham-Durham collaboration, paper 274
[19] TENNES (A.G.), VERSTEEG (M.F.), WOLTERS (G.F.), paper 250
[20] LYONS (L.) et al., Weizmann Institute, paper 347.