To cite this version:

V. Kutin. CHARGE-EXCHANGE RESULTS FROM SERPUKHOV. Journal de Physique Colloques, 1973, 34 (C1), pp.C1-290-C1-291. <10.1051/jphyscol:1973135>. <jpa-00215215>
Differential cross sections for the charge-exchange reactions (I)–(IV) have been measured in the Serpukhov energy range. These reactions

\[\pi^- + p \rightarrow \pi^0 + n, \]
\[\pi^- + p \rightarrow \eta + n, \]
\[K^- + p \rightarrow K^0 + n, \]
\[p + p \rightarrow n + n, \]

are among the simplest processes of exchange scattering, because the asymptotic behaviors of their amplitudes are dominated by t-channel contributions from one or two poles with the quantum numbers of the \(\rho \) and \(A_2 \) mesons. Figures showing some of the results are included in Amaldi’s rapporteur talk.

Measurements for the reactions I and II were taken at incident momenta \(p = 21, 25, 32.5, 40 \) and \(48 \) GeV/c [1]. Photon pairs from \(K^- \) decay were detected by an optical spark spectrometer. The differential cross section for (I) has a maximum at \(-t \approx 0.04\) (GeV/c)^2; then in the interval \(0.1 < -t < 0.6 \) (GeV/c)^2 it falls rapidly with increasing \(-t\), and for \(-t > 0.6\) (GeV/c)^2 it goes through a second maximum. In the momentum range \(6 < p < 50 \) GeV/c the differential cross section at zero angle is described by the power function

\[d\sigma/dt (t=0) = (1.35 \pm 0.15) p^{-0.83 \pm 0.05}. \]

From Eq. (1) it follows that the value of the \(\rho \) trajectory at \(t = 0 \) is

\[a_\rho (0) = 0.58 \pm 0.03. \]

This value is in disagreement with data for the total cross section difference \(\Delta \sigma = \sigma(K^- p) - \sigma(K^- n) \), with data above 25 GeV/c. This discrepancy is probably connected with the correction for nucleon screening in the deuteron. To remove the discrepancy it is sufficient to increase the Glauber correction by 13%.

The forward peak of \(K^- p \rightarrow K^0 n \) scattering shrinks slowly with increasing energy; the slope parameter \(b \) is described by a logarithmic \(s \)-dependence:

\[b = (4.7 \pm 0.5) + (0.8 \pm 0.4) \ln (s/s_0). \]

This means that the contributions of \(\rho \) and \(A_2 \) exchange are not yet important and the asymptotic regime for reaction (IV) occurs at considerably higher energies.

For reaction (II), the parametrization of the \(A_2 \) trajectory is nonlinear:

\[a_{A_2} (t) = (0.52 \pm 0.04) + (1.2 \pm 0.3) t + (0.7 \pm 0.2) t^2. \]

In the region \(t \approx 0 \), this \(A_2 \) trajectory goes considerably higher than values deduced from data at lower energies. The forward scattering cone shrinks slowly as energy increases, for \(0.2 < -t < 1 \), and at \(-t = 1.1\) (GeV/c)^2 the differential cross section has a flat minimum.

Cross sections for reactions (III) and (IV) have been measured at 25, 35 and 39 GeV/c [2,3]. The energy dependence at \(t = 0 \) for reaction (III) is described by

\[\frac{d\sigma}{dt} (t=0) = (5 \pm 1) p^{-1.47 \pm 0.10}. \]

and is below the optical limit defined by the total cross section difference \(\Delta \sigma = \sigma(K^- p) - \sigma(K^- n) \), with data above 25 GeV/c. This discrepancy is probably connected with the correction for nucleon screening in the deuteron. To remove the discrepancy it is sufficient to increase the Glauber correction by 13%.

The forward peak of \(K^- p \rightarrow K^0 n \) scattering shrinks slowly with increasing energy; the slope parameter \(b \) is described by a logarithmic \(s \)-dependence:

\[b = (4.7 \pm 0.5) + (0.8 \pm 0.4) \ln (s/s_0). \]

where \(b \) is measured in (GeV/c)^2 and \(s_0 = 10 \) GeV^2.

The cross section for \(pp \rightarrow nn \) continues to fall as rapidly with increasing energy as at \(p \lesssim 20 \) GeV/c:

\[\sigma(pp \rightarrow nn) = (11 \pm 2) p^{-1.8 \pm 0.1}. \]

A narrow peak is clearly seen in \(d\sigma/dt (0 \leq -t \leq 0.02\) (GeV/c)^2), which is analogous to that observed at lower energies. The cross section decrease is equally rapid at all \(t \)-values (\(\sim 1/p^2 \)). This means that the contributions of \(\rho \) and \(A_2 \) exchange are not yet important and the asymptotic regime for reaction (IV) occurs at considerably higher energies.
REFERENCES

[1] SOLOTOV (V.N.) et al., papers 357 and 358
[2] SOLOTOV (V.N.) et al., papers 425 and 426