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A MICROSCOPIC VIEW OF NUCUAR COLLECTIVE PROPERTIES 

Michel BARANGER - M.I.T. 

Resume - Apres avoir discutd les notions de forme, de deformation et de mollesse nucldaire, 
les diverses theories microscopiques du mouvement collectif sont passees en revue et le pro- 
bl&me de leur interdependance est souleve. L'approximation adiabatique du champ Hartree-Fock 
dependant du temps est traitde plus en detail. 

Abstract - After discussing the concepts of nuclear shape, deformation and softness, the 
various microscopic theories of collective motion are reviewed and the problem of their rela- 
tionship is raised. The adiabatic time-dependent Hartree-Fock approximation is treated in 
more detail. 

We talk about collective behavior if many 

nucleons are doing the same thing. Classically, this 

means that there exists a single-particle quantity 

i = 1 

which has a large average value. Quantally, the same 

quantity has large matrix elements between stationary 

states. We can distinguish static collective proper- 

ties and dynamic collective properties, or collec- 

tive motion. In the static case U is large and in- 

dependent of t . The quantal translation of this is 
that U has a large average value, or a large diago- 

nal matrix element (J~JuJ~), in a stationary state 

9. For collective motion, on the other hand, U(t) 
is large and changes with time. The quantal transla- 

tion is that the diagonal matrix element 

($(t) I U  l\L(t)) for some non-stationary states $(t), 

is large. But we are more used to dealing with sta- 

tionary states only ; then we can use the equiva- 

lent definition that the off-diagonal matrix ele- 

ment (qi 1~19.) is large between certain .pairs of 
J 

stationary states. 

As an example of static collective proper- 

ty, we have the nuclear shape. Classically, you would 

define the shape of a nucleus at any instant of time 

by taking a snapshot of it. This would yield a col- 

lection of dots such as those of Figure 1, one dot 

of-& nucleon. The shape is then defined in terms 

of the distribution of dots in the picture. For 

instance, we might use the magnitude of the quadru- 

pole moment as a shape parameter. To this end, let 

us denote by q (i) the five components of the quadru- 
P 

pole moment for nucleon i, i.e. 

2 
qP(i) = ri YpP(ei,'pi) . 

Fig .l 

The total quadrupole moment is Q = 
P 

i = l  
2 and its magnitude is 191 = 1 lQPl2 . In the pic- 

P 
ture drawn in Figure 1, this quantity is statisti- 

cally different from zero, and therefore this parti- 

cular classical nucleus may be said to possess a cer 

tain quadrupole deformation. 
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The quanta1 equivalent of this definition 

of the shape is as follows. Now you have a stationa- 

ry state wave function Jr(xl,x2,. . . , x ) and YOU want A 
to know its shape. Once again you take a snapshot, 

i.e. you make a simultaneous measurement of the coor- 

dinates of all the nucleons. This may be very hard 

experimentally, but it does not violate any law of 

quantum mechanics. You repeat the experiment many 

times on identical nuclei in the identical state Jr. 
The result is a distribution of patterns like that 

of Figure 1. The probability associated with each 

pattern is IJr(x1.x2,. . .,xA) 12. If you have chosen a 

dysprosium nucleus in its ground state, for instance, 

there will be many different patterns possible, but 

every one of them whose probability is not negligi- 

ble will show a strong deformation similar to Figure 

1. For lead-208, on the other hand, the patterns 

It is clear that dysprosium is strongly deformed 

and that lead is not. In dysprosium, it makes sense 

to characterize the shape by the mean value of the 

magnitude of the quadrupole moment 
- 
I Q I ~  - (J~IIQI~IJ~) = ( U I ~  Q>,IJ~) . 

)1 

The second-quantized definition of the single-particle 

operator Q in this formula is 
I.' 

Another example of a static collective 

property is the amount of pairing in a spherical 

nucleus. This is defined in a way quite analogous 

to our definition of the quadrupole shape. Instead 

of Qp, we introduce the pairing operator 

will be much more spherical. In either case, you + r + + 
2 p = 

can calculate I Q I  for each pattern as in the clas- 1 '& ci . . 
sical case, and then you have a probability distri- 

aS 

where f is some suitable wave function for two 
bution for lQl2. This will probably look like ap 

nucleons coupled to J=0. This is not really a 
Figure 2. 

single-particle operator, but it is no more compli- 

cated since it also con-s two c's. In analogy 

with our definition of 1Q12 , we can define 

Dysprosium 

Lead 

Fig 2 

If this is statistically different from zero, the 

nucleus can be said to possess a static pairing 

deformation. As before, we could also look at the 

probability distribution for lplL . 

We said at the beginning that a collective 

variable could be recognized from its large average 

value, or its large diagonal matrix elements. Let us 

ask now : large compared to what ? The answer it that 

it must be large compared to the value it would have 

for a completely chastic, uniform, non-collective 

"substrate". For the collective motion of a classi- 

cal gas, for instance, the substrate is the equili- 

brium state of the gas given by statistical mecha- 

nics, and the collective phenomenon might be sound 

of long wavelength superimposed on this. For the 

two nuclear examples above, the substrate might be 

independent particles in a spherical well ; one could 

also add short-range correlations to this picture 

and make it a spherical drop of nuclear matter. 

Collective properties grow like the number of 
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particles, while for random motion the growth is pro- 

portional to the square root. 

not be hard to add Brueckner and Bogoliubov. 

A useful distinction, at this point, is 

that between hard and soft nuclei. Dysprosium is 

hard, because its shape is almost rigid, as shown 

by the probability distribution of Figure 2. There 

are many soft nuclei, for which f ( 1 ~ 1 ~ )  looks like 

Figure 3 ; they have no definite shape, but it would 

be wrong to callthem spherical. Similarly, some 

nuclei are "pairing hard" and some are "pairing 

soft". A hard deformed nucleus can be set in rota- 

tion ; this is a kind of collective motion which 

manifests itself by a rotational band. Similarly, a 

pairing-hard nucleus belongs to a band of ground 

states of adjacent even-even nuclei. A soft defor- 

med nucleus undergoes a mixture of rotations and 

shape oscillations. A pairing-soft family of nuclei 

shows pairing vibrations. 

S o f t  nucleus 

From now on, I shall talk mostly about 

collective motion. First, I want to make a survey of 

microscopic theories of collective motion. Suppose 

that you know the many-body hamiltonian H ; how do 

you calculate collective motion ? For this, you 

should first be able to calculate the substrate 

mentioned earlier. I shall assume that Hartree-Fock 

theory is adequate for this. This is not really cor- 

rect ; we should really be doing Brueckner-Hartree- 

Bogoliubov : Brueckner for dealing with short-range 

correlations, and Bogoliubov for pairing. But 

these are, after all, minor refinements on Hartree- 

pock ; if we can do a microscopic theory of collec- 

tive motion for the Hartree-Fock case, it should 

In all microscopic theories of collective 

motion, the first problem is to choose collective 

variables ; let us call them ui . This is actually 
a very big problem and I shall come back to it. 

Then, the aim of the theory in the classical case 

is to derive equations of motion for ui(t) . In 
the quanta1 case, what you are looking for is a 

Schroedinger equation 

where f (u) is a wave function of the u.'s and x a 
hermitian hamiltonian operator acting on f. In some 

of the theories, X comes out as a second-order dif- 

ferential operator 

where g. . (u) is a synnnetric matrix and G(u) is the 
1 3  

weight function to be used in calculating the norma- 

lization of f. This is a familiar type of Schroedin- 

ger equation. It looks like a quantized version of 

a classical theory in which there is a potential 

energy ~(u) and a kinetic energy quadratic in the 

velocities, with inertial coefficients depending 

on u. One has a lot of intuitive feelings for the 

solutions of such a Schroedinger equation, and in 

simple cases one also has a lot of experience in 

solving it numerically, since it is a differential 

equation. Some theories of collective motion actual- 

ly go through a classical stage, then they obtain a 

hamiltonian of the above form by quantization. Others 

obtain this form directly. Finally, there are theorie 

which do not give an d o f  this form : in principle 

(ul~lu') could be the most general hermitian func- 

tion of two sets of collective variables. 

I shall review briefly some microscopic 

theories of collective motion that I know about : 

1 - The randm phase approximation (RPA). This is 

the theory which has been most used in the practical 

calculations of the past. It can be derived in many 

ways : one is through time-dependent Hartree-Fock, 

which I shall discuss later ; other derivations go 

through quasi-bosons, or Feynman diagrams, or 



linearized equations of motion. The RPA is the only 

theory in which the collective variables do not need 

to be chosen a priori ; they come out of the forma- 

lism. However, the RPA is severely restricted because 

it approximates 1 by a harmonic oscillator hamilto- 

nian ; it is a linearized theory. Therefore it is 

usually valid only for vibrations of small amplitude 

in the vicinity of static equilibrium. This corres- 

ponds to equally spaced energy levels and harmonic 

oscillator selection rules. For instance, fission 

could not possibly be described by the RPA. The RPA 

can be improved slightly by introducing small anhar- 

monic terms, but even then it is still a very res- 

tricted theory. An advantage of the RPA, however, 

besides the fact that you do not have to guess the 

collective variables, is that it is valid for arbi- 

trarily large oscillation frequency, or level spa- 

cing. 

2 - Adiabatic time- dependent Hart ree-Fock (AT0.W) . 
In this approximation, you assume that the wave 

function is a time-dependent Slater determinant. You 

pick a family of Slater determinants @(xl,x2,. . . ,x . 
A ' 

u1,u2, ... ) parametrized by the collective variables 
u1,u2, ... and you assume that the wave function has 
to be one of these at all times. From this assump- 

tion, you derive classical equations of motion for 

ui(t). I shall give more details later. You can also 

derive an expression for the energy in terms of the 

collective variables ui and the associated veloci- 

ties bi. But you find that this energy is not of the 
familiar type quadratic in the velocities. In order 

to force it to be of this type, you make the adiaba- 

tic approximation, which is an expansion in powers 

of the velocities, stopping at second-order. Youcan 

then quantize in the usual way, and this gives a 

hamiltonian which is a second-order differential 

operator, as written earlier. The ATDHF approximation 

is valid under condit'ions opposite to those for the 

RPA. In the RPA, only small deviations from static 

equilibrium are allowed ; in ATDHF the deviations 

can be arbitrarily large. In the RPA, it is the 

excitation energies which can be arbitrarily large, 

while in ATDHF they have to be small compared to 

single-particle excitation energies (this is the 

adiabatic approximation). 

3 - The Born-Oppenheimer-Villars approximation (BOV) 

Here, you make a change of coordihates, f'rm the 

original xlx 2...xA to a new set which includes the 

collective variables. Call it xix; ... ulu 2... . The 
way to do this is to introduce some constraints on 

the particle coordinates, one for each collective 

variable, the constraint expressing the fact that the 

collective variable has a certain value. The proper 

handling of the constraint from then on is of course 

crucial. After rewriting the many-body hamiltonian 

in terms of the new variables, you look for solutions 

of the form 

Here @ is like the electronic wave function in the 

Born-Oppenheimer approximation; it contains x' as 

variables and u. as parameters. You obtain it by 

solving the Schroedinger equation with fixed values 

of ui. This can be done, for instance, by static 

Hartree-Fock in the presence of the constraints. 

Afterwards, you are left with a Schroedinger equa- 

tion for the collective wave function f(u ) alone, 
i 

the analogue of the nuclear wave function for mole- 

cules. The eigenvalue of the @ problem becomes the 

potential energy for the f problem. The collective 

hamiltonian in this approximation is also a second 

order differential operator. The BOV approximation 

seems to be closely related to ATDHF. The Born- 

Oppenheimer and the adiabatic approximations are 

obviously similar. However, in BOV there is no in- 

termediate classical stage, and therefore no need 

to requantize. This is an advantage, because the 

quantization procedure is ambiguous. 

4 - The generator coordinate method (GC) of Griffin- 
Hill-Wheeler. In this approach, you start by choosing 

a family of wave functions depending on the collec- 

tive variables as parameters. I shall call them 

@(xlx2...xA;u1u2...). Since I have assumed a Hartree- 

Fock subtrate, we can take these to be Slater deter- 

minants. Next you assume that a stationary wave 

function of the nucleus can be written as the most 

general linear combination of the a's 

= J  duldu2...f(u1uZ.. )@(X~X~...~~;U u ' 1 2") 
You use 9 as a trial wave function in the variational 



principle and you comne out with a Schroedinger-like 

equation for f, which plays the role of collective 

wave function. This equation is 

with (ul~lu') = (@(x,u) l~)m(x,u')) 

This is obviously a very general method ; if you work 

with a complete set of Slater determinants you can 

even get the exact answer. The other approximations 

are probably all special cases of this, although the 

only complete proof that I know of is for the RPA. 

Anyway, it is meaningless for someone to say : I am 

using the approximation of generator coordinates. 

It is not an approximation. What is important is to 

ask : what Slater determinants does he include in 

his working space, and with what approximations 

does he solve the Schroedinger equation for f ? 

5 - The method of Klein and Collaborators. The three 
previous approaches, ATDHF, BOV and GC, all attempt 

to derive a collection Schroedinger equation. Klein, 

on the other hand, adopts the Heisenberg point of 

view. Let me recall., for instance, how Heisenberg 

looked at the one-dimensional harmonic oscillator. 

He said : the problem is to find two matrices Q and 

P such that QP- PQ = i and such that the matrix 
1 2 2  H = -  (P +Q ) turns out to be diagonal. This pro- 

blem has a unique solution, which is of course iden- 

tical to the Schroedinger one, although for the os- 

cillator it is much easier to get it in the Heisen- 

berg way. In a similar fashion, Klein starts by 

choosing a set of operators, usually single-particle 

operators of the type mentioned at the beginning of 

my talk, which he guesses will be important for a 

certain kind of collective motion. He expresses the 

many-body hamiltonian in terms of them, which invol- 

ves some approximations. He calculates the comu- 

tators between the various operators, and again 

approximatee by dropping pieces which cannot be 

expressed in terms of the operators he has chosen. 

In this way, he obtains a closed algebra, similar 

to Heisenberg's oscillator algebra, but usually much 

more complicated. He then finds matrix solutions by 

iterative methods. In this fashion, Klein's group 

has obtained some beautiful and sometimes very accu- 

rate solutions for some relatively simple problems. 

It is my personal feeling, however, that, just as 

for most problems of ordinary quantum mechanics the 

Schroedinger method is far more powerful than the 

Heisenberg one, the same will be true in the micros- 

copic theory of collective motion. 

Now I shall give some details about the 

ATDHF approach. I actually know three different 

versions of it, and there may be more. Itshall pre- 

sent a version which was worked out last year by 

M. Vdneroni, C.W. Wong and myself. The other ver- 

sions are by M. Saraceno and F. Villars and by A. 

Kennan, 

First of all, a Slater determinant can be 

specified by giving the single-particle density 

matrix p, defined by 

2 
The condition p = p  is equivalent to the statement 

that @ is a Slater determinant, and p is much more 

convenient to use than m . Now, take the Heisenberg 
equation of motion 

d + + 
i (m:t) Jc c Im(t)) = (m(t) lc c H-HC+C (m(t)) 

a  Y a y  a y  

and assume that @(t) is a Slater determinant at all 

times. By straightforward application of Wick's theo- 

rem, you find the following equation of motion for p 

where W is the usual Hartree-Fock hamiltonian, i.e. 

I have assumed that the exact hamiltonian H has a 

one-body part K and a two-body part V. The TDHF equa- 

tion of motion above is a generalization of the sta- 

tic Hartree-Fock condition, which is 

You can easily show that the energy 

is independent of time if p is solution of the TDHF 

equation. 

So, we have an equation of motion which 

describes the trajectory of the point p in the space 

of all Slater determinants. This equation, however, 

6 
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is not in the usual form of a second-order differen- is also an expansion in powers of x . Hence we pro- 
tial equation, linear in the second derivative. Equi- 

valently the energy is not in the usual fom of a 

potential energy plus kinetic energy, the latter 

quadratic in the velocities. The reason for this is 

that all usual coordinates are even under time- 

reversal, and all usual velocities are odd, while 

here we are using a variable p which is neither one 

not the other. Our p plays the role of both coordi- 

nate and velocity, and this is why the equation of 

motion is first-order only. So, we extract from p 

a time-even coordinate. This is done by writing 

= ,ix -ix 
Po 

where both po and x are hermitian and time-even, and 
2 - po is a Slater determinant, i.e. po - po . If we 

demand further 

it can be shown that p determines po and x uniquely. 
Now pop which is a time-even Slater determinant, is 

our coordinate. If you ask any one to provide you 

with a family of Slater determinants to be used in 

some problem of nuclear collective motion, he will 

almost invariably give you nothing but time-even de- 

terminants, because he will take a family of time- 

even potentials and fill them to some closed shell, 

Hence, po is actually the kind of Slater determinant 

that one always thinks of, and it is completely 

appropriate as a coordinate. Now, you can rewrite 

the equation of motion as two coupled equations for 

po and X, then you can eliminate x and obtain a 
second-order differential equation for po alone. 

This equation, however, is still not of .. 
the familiar form, i.e, linear in po . This is be- 
cause there is no reason to expect a kinetic energy 

quadratic in the velocities. If you want it quadra- 

tic, you have to make it so by expanding in powers 

of the velocities, and this is the adiabatic appro- 

ximation. Now, if the velocities are small, it means 

that at all instants of time p is almost in static 

equilibrium, and therefore its time-reversed 

-ix .ix 
Pr = e Po 

must be almost equal to p . This means that x is 
small, and an expansion in powers of the velocities 

ceed to expand either the equations of motion or 

the energy in powers of x and stop at second-order. 
We write the expansions of p and W as follows 

p = PO+p1+p2+"- 

w = w +w1+w2+... 
with 

n (1) = K(1) + Tr2 V(1,2) po (2) 

w1 (1) = Tr2 V(1,2) p1 (2) 

etc... . . 
f shall simply write the collective energy, 

since it is what we need later in order to quantize. 

One finds 

E = X + U  . 
The kinetic energy %is the part of 8 that is second- 

order in X, while the potential energy V is zero- 

order and given by 

1 u = TrK po+~TrlTr2 po(l) V(1,Z) po(2) (@ol"l@o) . 
This is simply the expectation of the many-body 

hamiltonian for the Slater determinant po. It is 

what everybody has been calling potential energy, 

potential energy surface, or deformation energy sur- 

face. The real virtue of ATDHF, then,is that it pro- 

vides one with a kinetic energy to be used jointly 

with the usual potential energy. This is 

d 
2 2 - 

x = Tr W (1-pol pl (1-po)-poplpo] 

1 + Trl Tr2 (1)V(1,2) (2) . . . . 
It is quadratic in pl, and pl itself can be expressed 

linearly in terms of tio through the equation 

i Po 
= so p1 - p1Wo + w1 p0 - pow1 

which is just the first-order part of the original 

TDBF equation. Xis therefore quadratic in the velo- 

city po . 
These expressions are very general, and of 

course one should not think of solving them numeri- 

cally with unrestricted p The thing to do, instead, 
0. 

is to pick a family of pots depending on a few collec- 

tive parameters, po(ul,u 2...). Then the potential 

energy becomes a function U(ul,u 2...). kh can write 

Po as 
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s o  t h a t  t h e  k i n e t i c  energy takes t h e  form 

This r e s t r i c t e d  problem can then be quantized, and 

t h e  Schroedinger equation solved numerically. 

How can we choose s u i t a b l e  fami l ies  of  

p 's ? This choice is c r u c i a l ,  of course, f o r  t h e  

q u a l i t y  of t h e  approximation. The same problem a r i -  

s e s  i n  t h e  GC method and i s  even more se r ious  there,  

s ince  i n  ATDHF we a r e  only looking f o r  time-even 

determinants, while i n  GC it might wel l  be necessary 

t o  give t h e  determinants a time-odd par t ,  which 

makes them unfamiliar.  The s implest  thing t o  do, 

and t h a t  i s  what is  most o f t e n  done, is j u s t  t o  guess 

a family of s i n g l e - p a r t i c l e  p o t e n t i a l s  R(ul,U 2...) 

which look reasonable and f i l l  them with nucleo~ts. 

This amounts t o  t e l l i n g  the  nucleus : here  i s  a fa-  

mily of shapes t h a t  you a r e  allowed t o  have ; choose 

between them, but every o ther  shape is  forbidden. 

A l e s s  a u t o c r a t i c  procedure, o f t e n  advocated by 

A. Kerman, is t o  sub jec t  the  nucleus t o  a v a r i e t y  of  

ex te rna l  p o t e n t i a l s  and l e t  it f i n d  i t s  own shape. 

This  is c e r t a i n l y  a l o t  more work f o r  the  t h e o r i s t ,  

but perhaps i t  is worthwhile. Let  t h e  ex te rna l  po- 

t e n t i a l s  be S1, S2, ... and give them var iab le  

s t reng ths  ul, u2, ... . Then t h e  hamiltonian of t h e  

constrained nucleus is 

L e t t i n g  t h e  nucleus f i n d  i t s  own shape means looking 

f o r  t h e  s t a t i c  Hartree-Fock s o l u t i o n  of H This  u' 
y i e l d s  a densi ty-matr ix p (u1,u2.,.). The p o t e n t i a l  

s t reng ths  uI, u2.., can then become c o l l e c t i v e  coor- 

d ina tes  and t h e  c o l l e c t i v e  energy can be ca lcu la ted  

a s  out l ined e a r l i e r ,  with H a s  hamiltonian, not H 
U. 

It is i n t e r e s t i n g  t o  think about t h e  re la -  

t ionsh ip  between ATDHF, BOV and GC. The f i r s t  two 

a r e  c e r t a i n l y  very close,  but I do not know what 

t h e  exact  re la t ionsh ip  is. BOV does not  need t o  be 

quantized and there fore ,  i f  it should t u r n  out t o  be 

no more complicated than ATDHF, i t  should be prefer-  

red. For t h e  same reason, and a l s o  because GC is 

very general,  one would l i k e  t o  know how t o  der ive  

ATDHF from GC. 1 do not  think any one has done t h i s  

yet. It seems t o  me t h a t  it w i l l  not  work a s  long a s  

people choose, a s  they almost always do, a GC family 

of determinants which is purely time-even. The ev i -  

dence f o r  t h i s  is  well-known and was brought out  by 

P e i e r l s  and Thouless long ago. It c o n s i s t s  i n  looking 

a t  t h e  s implest  kind of  c o l l e c t i v e  motion, t r a n s l a -  

t i o n a l  motion, and using the various theor ies  t o  cal-  

c u l a t e  t h e  t o t a l  mass of  the  nucleus. ATDFF gives 

the  r i g h t  answer, using a s  p -family the  various 

s t a t i c  Hartree-Fock so lu t ions  centered on a l l  points  

i n  space. GC with t h e  same po-family gives a wrong 

answer. P e i e r l s  andThouless showed tha t ,  t o  get  the  

r i g h t  answer, you need a two-parameter family whose 

determinants a r e  not a l l  time-even. A s imi la r  d i s -  

crepancy between ATDHF and GC a l s o  e x i s t s  f o r  the  

next s implest  kind of c o l l e c t i v e  motion, ro ta t ions ,  

even though i n  t h a t  case the exact answer f o r  the 

moment of i n e r t i a  is not  known a p r i o r i ,  It seems 

t o  me t h a t ,  even i f  the  ATDliF approach should some 

day be found too crude f o r  accurate  work, i t  w i l l  

always be useful  f o r  the  purpose of manufacturing 

mn-time-even S l a t e r  determinants t o  be used i n  the  

GC method. In  p r i n c i p l e  t h i s  would work a s  follows. 

To every s e t  u of time-even generator  coordinates  

you a s s o c i a t e  a s e t  of v e l o c i t i e s  u, thus doubling 

the number of generator  coordinates .  Given the time- 

even p (u) and given u, you c a l c u l a t e  pl by solving 

the  l i n e a r  equation wr i t t en  e a r l i e r  ( iio = ...). 
Since pl i s  e s s e n t i a l l y  the same a s  x , you a r e  now 

po e a s  your generator  able  t o  use p(u,;) = e l X  - i X  

determinant. One wottld expect such a theory t o  be 

a t  l e a s t  a s  good a s  ATDHF i n  a l l  cases. 

The der iva t ion  of ATDHF from GC is only 

one p a r t i c u l a r  way of g e t t i n g  a Schroedinger equa- 

t i o n  of t h e  fami l ia r  type, i . e ,  a second-order d i f f e -  

r e n t i a l  equation, s t a r t i n g  with the GC approach. 

There e x i s t  o ther  ways of approximating the GC ex- 

pressions t o  achieve the  same r e s u l t .  Some nice work 

along these l i n e s  has been done by B. Banerjee and 

D. Brink recent ly.  But I have discussed pure theory 

long enough, and it is  time t o  ask, perhaps, whether 

any of t h i s  can be useful  i n  present  day nuclear  

physics. 
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One s t r i k i n g  fea ture  of present  day 

nuclear  theory, i n  my opinion, is t h a t  it is  becoming 

more and more unif ied.  In  the o l d  days, we used t o  

have a  co l lec t ion  of  separa te  models, each describing 

p a r t  of t h e  phenomena. We had s t r u c t u r e  t h e o r i s t s  and 

reac t ion  t h e o r i s t s ,  and they never ta lked t o  each 

other .  tk? had a  c o l l e c t i v e  o r  hydrodynamical model 

f o r  many proper t i es  of heavy nuc le i ,  which was unre- 

l a t e d  t o  the  s h e l l  model. We were content with a  pu- 

r e l y  s t a t i s t i c a l  descr ip t ion  of neutron resonances. 

Nowadays, on the  o ther  hand, people t a l k  the same 

language more and more. Structure and reac t ion  theo- 

rists cannot l i v e  without each other .  Many of t h e  old 

pieces a r e  now f i t t i n g  together  i n t o  a  g i g a n t i c  *ole, 

Not only i s  i t  allowed, but i t  i s  fashionable t o  ca l -  

c u l a t e  c o l l e c t i v e  proper t i es  from the s h e l l  model. 

And i t  i s  not unthinkable t o  t r y  t o  ca lcu la te  the  

densi ty of neutron resonances, averaged over a  su i -  

t a b l e  energy i n t c r v a l ,  from more fundamental theory. 

Every t h e o r i s t  has the microscopic point of 

vgew a t  l e a s t  a t  the back of  h i s  mind. Moreover, 

everybody agrees what the microscopic theory should 

be. X t  goes through t h e  s h e l l  model, and then t h e  

s h e l l  model has t o  he j u s t i f i e d  from t h e  nucleon- 

nucleon in te rac t ion .  Only the opt imists ,  however, a r e  

hoping f o r  a complete explanation of a l l  nuclear  ptie- 

nomena ab i n i t i s .  For most of us the  f i e l d  is  too 

v a s t ,  the re  a r e  s t i l l  too many missing connections, 

and we s t i l l  very much need the  o ld  models {collec- 

t ive ,  s t a t i s t i c a l ,  ... ) a s  crutches t o  he lp  our explo- 

r a t i o n s ,  The d i f fe rence  with t h e  old days, however, 

is t h a t  we a r e  learning t o  connect the  models with 

each o ther ,  we bel ieve they a r e  connected, snd we 

a r e  not a f r a i d  of mixing models when discussing a  

s i n g l e  phenomenon. 

The c o l l e c t i v e  model cons i s t s  i n  picking 

c o l l e c t i v e  var iab les  and wr i t ing  a  c o l l e c t i v e  

Schroedinger equation i n  a  purely phenomenological 

way, f i t t i n g  the  parameters t o  the  data. Taken alone, 

the  c o l l e c t i v e  model can explain anything, because 

you a r e  f r e e  t o  introduce s o  many parameters t h a t  you 

cah f i x  anything : t h e  model has  no pred ic t ive  va- 

lue. This  is  why people have been so  i n t e r e s t e d  i n  

der iv ing  the c o l l e c t i v e  model from microscopic theo- 

ry. The present  s t a t e  of t h e  s t a t i c  microscopic theo- 

r y  ( the  theory f o r  t h e  subs t ra te )  is no t  e n t i r e l y  

s a t i s f a c t o r y ,  but there  has  been, nevertheless ,  

some very b ig  successes, i n  p a r t i c u l a r  with the  ca l -  

cu la t ions  of nuclear  matter  and of closed-shel l  

nuclei .  

I f  we want t o  be p r a c t i c a l  about applying 

the  same microscopic theory to c o l l e c t i v e  motion, 

we must take i n t o  considerat ion the f a c t  t h a t  t h e  
208 bes t  Brueckner-Hartree-Fock ca lcu la t ions  of Pb, 

f o r  instance,  take severa l  hours of computing time. 

Col lec t ive  motion of a  heavy nucleus is much more 

complicated than *08pb. F i r s t  the  shapes a r e  compli- 

ca ted  ; second you need a  d i f f e r e n t  BHF ca lcu la t ion  

f o r  each poss ib le  shape. This  is completely out  of 

the  question with present  computers. I f  we want t o  

do a c o l l e c t i v e  ca lcu la t ion ,  we must s implify the 

microscopic theory grea t ly ,  and of course we must 

do 80 without los ing  i t s  e s s e n t i a l  fea tures .  And so, 

i t  is  for tuna te  t h a t  i n  recent  months a  s implif ied 

version of BHF has been emerging which shortens 

the  computing time by a  f a c t o r  of severa l  tiundreds. 

I am r e f e r r i n g  t o  the ca lcu la t ions  with fo rces  of the 

Skyrme type which were done by Brink and Vautherin 

and o ther  people a t  Orsay, and a l s o  by Moszkowski, 

and whose j u s t i f i c a t i o n  on the bas i s  of orthodox 

BHF theory has been given by Negele and Vautherin. 

Thanks t o  t h i s  approach, a  t rue  microscopic calcula-  

t i o n  of c o l l e c t i v e  motion may see t h e  l i g h t  i n  a  

few years. 

I f  i t  does, i t  w i l l  be again a very long 

ca lcu la t ion ,  which won't be repeated very of ten.  This 

is  not enough ! I want t o  be ab le  t o  play around 

with these th ings  ; we need an even simpler method. 

W l l ,  the re  is  one ; it has been around f o r  a  few 

years  and i s  very much i n  use today ; it is c a l l e d  

t h e  Strut insky method, the  p r inc ip le  of  which has 

been explained t o  us severa l  times t h i s  week already. 

Unfortunately, t h i s  i s  one place where t h e  uni ty of 

nuclear  theory, which I ex to l led  e a r l i e r ,  i s  absent.  

The Strut insky people and t h e  Hartree-Fock people 

speak d i f f e r e n t  languages and they a r e  not t e r r i b l y  

amicable toward each other .  I n  view of t h e  importance 

of t h e  S t ru t insky  method i n  s implifying c o i l e c t i v e  

cn lcu la t ions ,  i t  is t e r r i b l y  urgent t h a t  the  connec- 

t i o n  between Strut insky and ATDItF be s tudied.  Such 

s tudy has not gone very f a r  yet.  For t h e  c o l l e c t i v e  

p o t e n t i a l  energy, the  Hartree-Fock people seem t o  



agree that Strutinsky is right at the static equili- 

brium points, but not elsewhere. For the kinetic 

energy, the Strutinsky people use the cranking formu- 

la, which differs from the ATDHF kinetic energy which 

I gave earlier in the following way. First, the 

single-particle hamiltonian which you use to build 

the Slater determinant po, which I have called K+R 

earlier, is assumed to be the same as Wo. This is not 

true usually ; it holds only for the static HF solu- 

tions. Second, the equation connecting pl and b is 

truncated and replaced by ipo = Wopl - plWo. Third, 
the last term in the kinetic energy, 1/2 TrTrplV pl, 

is left out. Perhaps some of these approximations 

compensate each other, but I do not know of any nu- 

merical study of these things, and a serious look at 

them is badly needed. 

Among the various microscopic theories 

which I discussed earlier, I think that ATDEF is 

particularly suited to the present, rather primitive, 

state of theory and experiment. This is true of 

Strutinsky theory too if someone succeeds in connec- 

ting the two. First of all, ATDHF goes through a 

classical stage which appeals to our intuition and 

makes it the embodiment of the collective model. This 

classical aspect means that it is restricted to 

heavy nuclei. No calculations in the sd shell, 

please ! Second, the theory is adiabatic, which means 

that collective motion must be slow compared to 

single-particle motion, but t - 6  shapes can vary all 

over the place. This is exactly what we need for the 

applications that we have in mind, namely quadrupole 

oscillations of soft nuclei, fission, and collisions 

between two heavy nuclei. In the even soft nuclei, the 

collective excitation energies are appreciably smal- 

ler than the pairing gap, so that there is no ques- 

tion that the adiabatic approximation is at least 

roughly valid. In the other two phenomena, for pre- 

sent-day experiments, the velocity of the collective 

motion is also always small compared to single- 

particle velocities. For instance, consider the ex- 

periments of Flerov and collaborators who bombard 

238~ with 136~e. The center of mass energy is 900MeV, 

but the Coulomb barrier is 600 MeV, so that by the 

time the nuclei touch they have only 300 >lev, which 

is less than 1 MeV per nucleon. Since the average 

kinetic energy of a nucleon in a nucleus is of the 

order of 20 MeV, this is very slow motion indeed. 

Any experiment in which the collective energy per 

nucleon, after going over the Coulomb barrier, is 

no more than a few MeV, is a candidate for the adia- 

batic treatment. This does not exclude the creation 

of a few single particle excitations in addition to 

the overall adiabatic motion. The bulk of the two 

nuclei srays in its instantaneous ground state, as 

the adiabatic approximation would have it, but there 

is certainly plenty of energy to allow a few nucleons 

to do funny things. Such a situation would have to 

be described by a coupled channel calculation, each 

channel corresponding to a different state of the 

excited nucleons, with the bulk moving according to 

ATDHF in every case. We are far from knowing how to 

do this very well in practice. Such a coupiing situa- 

tion will occur especially easily if the colliding 

nuclei carry nucleons in open shells ; it is essen- 

tial for the description of transfer reactions ; 

and of course we need it also to calculate the pro- 

perties of the odd soft nuclei. It is nothing but a 

restatement of the Bohr-Mottelson idea about coupling 

single-particle degrees of freedom with collective 

degrees of freedom. The same single-particle exci- 

tations, suitably averaged, may also give rise to 

the viscosity mentioned by Swiatecki in his talk ; 

it should be possible, somehow, to include it in the 

collective Schroedinger equation. 

I have no doubt about it. Quanta1 collec- 

tive motion is nowhere as varied and as rich as in 

nuclei. The experiments of the next few years will 

reveal it in its full glory, and I hope that the 

theorists can keep up. 
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DISCUSSION 

W. J . SWIATECKI (~erkeley) A. P 

Your talk dealt mostly with deriving the kine- 
tic energy. What about damping terms ? We are - 
worried that they might be overwhelming compared 

to the kinetic energy. Can you give any first 

order estimate if the relative importance of 

damping, say at 30-40 MeV excitation, such as 

might be of importance in heavy-ion reactions ? 

M. BARANGER (M.I.T.) 

I know at least one case where damping is not 

important, even negligible. This is the case 

of soft nuclei, on which I have worked myself. 

Concerning fission and collisions between 

heavies, I was convinced by the discussion at 

the end of your talk the viscosity there would 

be rather different from the usual viscosity 

of hydrodynamics. I have never tried to calcu- 

late it. I only have a vague feeling that, if 

there are many kinds of single-particle exci- 

tations superimposed on the collective motion, 

it should be possible to average them and the 

result would be some sort of viscosity, Your 

point that the damping might well be much more 

important then the kinetic energy is well ta- 

ken. I agree with you that we should try to 

find out. 

G. RIPKA (Saclay) 
12 

I want to suggest that a-nuclei ( C, 160, 20~e, 

24Mg) should be considered as soft nuclei and 

used to test the models you describe. There are 

many reasons for this : 

1 - The collective variables are well defined : 
they are the distances between the a-clusters. 

2 - They are soft because the calculations show 
that they are easy to bend or distort and with- 

out appreciably loosing energy. 

3 - They have various equilibrium shapes with 
weak but observable transitions. 

M. BARANGER (M.I.T.) 

All right, but I don't think the classical 

approximation would be valid any more. You 

could use the method of Villars, perhaps, or 

a version of generator coordinates equivalent 

to ATDHF, as long as you bypass the classical 

step. 

. ZUKER (Saclay) 
"Not only is it allowed but also fashionable to 

calculate collective motion with the shell 

model'! I am quoting the speaker. Now I quote 

Bruce French : "As things stand now most theo- 

ries are models of the shell model". I would 

like to protest against the omission of the 

shell model from the long list of collective 

theories available presented during this talk. 

On its own right and with its own methods the 
S.M. has produced many explanations of nuclear 

behaviour(collective and otherwise). It is not 

a theory of single particle motion or a conve- 

nient framework for deriving other theories 

only. 

It is certainly true that you are interested 

specially in "collective" properties, but then 

let me point out that we can use your defini- 

tion of collectivity given at the beginning of 

the talk, with which I very much agree : a dy- 

namic or static behaviour that enhances a gi- 

ven operator. Instead of the quadrupole or pai- 

ring operator take the l particle operator. 

You obtain then a most striking example of col- ,-, 
lectivity : the single particle states in "0, 
4 1 
Ca,... . 

M. BARANGER (M.I.T.) 

The reason why I did not include the shell model 

in my list of incomplete models is that I be- 

lieve that the shell model is the microscopic 

theory. Therefore I agree completely with you. 

I ehoughtthat one of the points of my talk waa 

to say just this. I am sorry if it did not come 

across. 

C.M. NEWSTEAD (Karlsruhe) 

You mentioned that is might be possible to cal- 

culate neutron level densities on a more funda- 

mental basis. Could you please tell us what you 

have in mind ? 

M. BARANGER (M.I.T.) 

I have in mind something very vague. I have 

never done it. I just know that when you start 

averaging things over energy, the expansions of 

perturbation theory become more convergent. It 
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is not unthinkable, therefore, that one might 

calculate an averaged level density by one of 

the perturbation methods of statistical mecha- 

nics. It is unthinkable indeed to try to cal- 

culate the exact levels. 

K. BLEKER (Bonn) 

The effect of viscosity in nuclear structures 

should come out naturally through the introduc- 

tion of collective variables by means of a 

transformation of variables (Oppenheimer and 

Villars). I have the impression that the effect 

might be larger in heavier nuclei where we have 

relatively dense levels corresponding to intrin- 

sic excitation (enhancing the change-over from 

collective excitations). There is, however, a 

question as to the choice of the collective va- 

riables : I would like to suggest the use of 

parameters which describe the admixing between 

the different Hartree-Fock solutions (in addi- 

tion to the variables describing the degeneracy 

of a single, deformed Hartree-Pock state). 


