THE STRUCTURE OF 6Li AND ITS COULOMB FORM FACTORS

Kuniharu Kubodera

To cite this version:
Kuniharu Kubodera. THE STRUCTURE OF 6Li AND ITS COULOMB FORM FACTORS. Journal de Physique Colloques, 1971, 32 (C5), pp.C5b-269-C5b-270. 10.1051/jphyscol:19715144. jpa-00214723

HAL Id: jpa-00214723
https://hal.archives-ouvertes.fr/jpa-00214723
Submitted on 1 Jan 1971

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
THE STRUCTURE OF ^6Li AND ITS COULOMB FORM FACTORS

Kuniharu Kubodera

Service de Physique Théorique - C.E.N. Saclay

Nous étudions le ^6Li dans le cadre (1) du modèle de Hartree-Fock sur des fonctions d'onde d'essai projetées et (2) du modèle en couches avec correlation. Les facteurs de forme coulombiens, élastique et inélastique, sont calculés et comparés avec les données expérimentales.

The ^6Li nucleus has been studied within the framework of (1) the projected Hartree-Fock model and (2) the shell model with configuration mixing. The elastic and inelastic Coulomb form factors are calculated and compared with the experimental data.

Recently several precise measurements have been performed of the Coulomb form factors of ^6Li with results differing considerably from the previous ones. [1] - [4]

The CO form factor in the elastic electron scattering and the C2 form factor in the inelastic scattering to the first excited state given by these new data are shown in Fig. 1 and Fig. 2, respectively. The respective rms radius and $B(2\gamma)$ deduced from these are 2.54 fm and 25.1 $e^2 fm^4$. The CO form factor can be explained fairly well by modifying the radial behavior of the single-particle (s.p.) orbits without changing the simple shell-model configuration, $(\alpha \gamma)^4 (\alpha \beta)^2$. [5] It is impossible, however, to explain the C2 form factor by this method.

The projected Hartree-Fock (PHF) method offers a convenient way to take account of the effect of excited configurations. [6] A detailed calculation of the form factors on the basis of the PHF method has been made by Suzuki and this author. [7] Two types of trial s.p. orbits were investigated; (1) the deformed orbits with major-shell mixing and (2) the "molecular" orbits, which are a linear combination of the s.p. orbits around the a- and the deutron-clusters. The latter permits the introduction of parity-mixing into the trial wavefunctions and also the investigation of the importance of polarization of the a-4 structure. With the above trial functions, the energy variation and the x^2-fitting of the form factors have been performed. The results are shown in Figs.1,2 and Table 1. It is found that the C1 and higher configurations make an important contribution to the C2 form factor. An extended calculation is now in progress.

BIBLIOGRAPHIE

[5] Radhakant (S.) and Ullah (N.), Nucl.Phys. 1969, 66, 673
Table I - The rms radius and the $B(\gamma \gamma)$ calculated with the use of the wavefunctions given (a) by the energy variation or (b) by the χ^2-fitting of the form factors.

<table>
<thead>
<tr>
<th></th>
<th>deformed orbit</th>
<th>molecular orbit</th>
<th>shell model</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>rms radius (fm)</td>
<td>2.29</td>
<td>2.42</td>
</tr>
<tr>
<td></td>
<td>$B(\gamma \gamma)$ ($e^2 fm^4$)</td>
<td>11.6</td>
<td>18.4</td>
</tr>
<tr>
<td>b</td>
<td>rms radius (fm)</td>
<td>2.36</td>
<td>2.41</td>
</tr>
<tr>
<td></td>
<td>$B(\gamma \gamma)$ ($e^2 fm^4$)</td>
<td>17.7</td>
<td>19.5</td>
</tr>
<tr>
<td></td>
<td>χ^2-value for 2γ</td>
<td>2.7</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>χ^2-value for 0γ</td>
<td>44.4</td>
<td>25.5</td>
</tr>
</tbody>
</table>

Fig. 1 - The elastic form factor.

- - - - Deformed-orbit model
- - - - 2k\hbar Shell Model
- - - - - - Molecular-orbit model

Fig. 2 - The inelastic form factor

- - - - - - - - - - - - Deformed-orbit model
- - - - - - - - - - - - Molecular-orbit model
- - - - - - - - - - - - Shell model with 2k\hbar excitations