OPTICAL ABSORPTION OF SOLID NEON AND ARGON IN THE SOFT X-RAY REGION
R. Haensel, G. Keitel, N. Kosuch, U. Nielsen, P. Schreiber

To cite this version:

HAL Id: jpa-00214645
https://hal.archives-ouvertes.fr/jpa-00214645
Submitted on 1 Jan 1971

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
OPTICAL ABSORPTION OF SOLID NEON AND ARGON IN THE SOFT X-RAY REGION

R. HAENSEL, G. KEITEL, N. KOSUCH, U. NIELSEN and P. SCHREIBER
Deutsches Elektronen-Synchrotron, Desy Hamburg, Germany
and
II. Institut für Experimentalphysik der Universität Hamburg, Hamburg, Germany

I. Introduction. — The solid rare gases which crystallize in the fcc lattice structure are among the simplest solids. While the lattice structure and dynamics have been investigated to some extent [1], [2], only some measurements have been performed on the optical properties.

Most measurements of the optical constants cover only the fundamental absorption region. Optical absorption measurements extend up to 14 eV [3]-[6], whereas optical reflection [7]-[11] and electron energy loss measurements [12]-[15] extend to about 30 eV.

At the onset of optical absorption, lines are observed the energy positions of which are very close to the first resonance absorption lines in the gases (8.43 eV in Xe, 10.03 eV in Kr, 11.62 eV in Ar and 16.68 eV in Ne [16]). These lines are normally interpreted as an intermediate case of Frenkel and Wannier excitons [17].

The first few absorption lines form hydrogenlike series converging to the onset of interband transitions. The absorption structures due to interband transitions can be discussed in the light of recent energy band calculations [18]-[25].

As the rare gases have been extensively investigated in the atomic state both experimentally and theoretically they are ideally suited for a comparison of the absorption cross sections of one material in both the gaseous and solid states.

Measurements of core transitions in solid Kr (3 d) and Xe (4 d) have recently been performed at DESY in the energy range up to 500 eV [32]-[34]. They have shown that near threshold the absorption spectra show big differences between the gaseous and solid state; for energies of 10 eV or more above threshold the spectra in both states are more and more alike, so that the atomic calculations also are a good approximation for the solid state.

In the following sections we want to report on measurements which have been performed on gaseous and solid Ne and Ar in the energy range 25 to 500 eV. This energy range covers the onset of transitions from the 2s-shell in Ne and from the 3 s, 2 p and 2 s shell in Ar. Data of the line shape of 2s-transitions in Ne and 3 s-transitions in Ar have already been reported in a previous paper [35]. Section II will give a short description of the experimental procedure and section III will present and discuss the experimental results.

II. Experimental procedure. — Of the three different techniques used for the measurement of the optical constants of the solid rare gases in the fundamental absorption region, only thin film absorption can be used in the 25 to 500 eV range. The optical normal-incidence reflectivity is very small (< 0.01). Therefore, the error due to long wavelength stray
light, which is reflected with a much higher reflectivity, is not tolerable. Electron energy loss measurements do not give sufficient energy resolution in this spectral range.

The experimental arrangement (Fig. 1) is the same as has been used for the Kr and Xe measurements [33], [34]. Light is coming from the 7.5 GeV electron synchrotron DESY [36], [37]. The thin films of solid Ne and Ar were evaporated onto thin C- or Al-foils, mounted in a cryostat with variable temperature.

Contamination of the samples was avoided by a shield with tubular extensions into both sides of the beam pipe which were cooled to liquid N₂-temperature. The spectrometer is a 1 m Rowland mounting with gratings G of 2 400 lines/mm and 3 600 lines/mm. The energy resolution was better than 0.1 ÅU. By choosing appropriate angles of incidence onto the grating, and by the use of a premirror M in front of the entrance slit ES and of Al-, Mg- and Sb-filters F, light of higher order reflections of the grating and stray light is essentially suppressed [38]. The energy calibration is based on the energy positions of gas absorption lines of Ne [27] and Ar [28] as given by Madden et al. For the gas absorption measurements, the cryostat is replaced by a gas absorption cell [39] with C- or Al-windows. The gas pressure is measured by a precision membrane vacuum meter (Datametrics Model 1014).

The absolute accuracy of the absorption coefficient obtained in our measurements is 15 % in the energy range 40 eV to 280 eV, and 30 % elsewhere. The relative accuracy was much better, differences in the absorption coefficient in the order of 1 % were clearly detectable if photon energies were not more than some eV apart.

III. Experimental results and discussion. — A. CONTINUUM ABSORPTION. — The absorption cross section \(\sigma \) of solid and gaseous Ne is shown in figure 2. Our gas measurements (dashed line) range from 110 to 280 eV. For comparison results of other authors [28], [40]-[44] are included. They are in good agreement with our results. The absorption coefficient for solid Ne (solid line) has been measured from 25 to 400 eV. As the thickness of the solid Ne film has not been determined directly the absorption coefficient of the solid is only known in arbitrary units. The adjustment is made by setting equal the integrated oscillator strengths of the solid and of the gas over the whole spectral range. By doing so we see an excellent agreement of both curves. This procedure has previously been applied with good success to Kr and Xe [33], [34]. On the basis of a lattice constant of 4.46 ÅU (fcc lattice) [1] the value of the exponential absorption coefficient \(\mu \) for solid Ne is given on the right-hand scale.

Figure 3 shows the absorption curves for Ar. The gas measurements (dashed line) range from 90 eV to 400 eV. For comparison results of other authors [28], [41], [43]-[49] are included. They are in good agreement with our results. The absorption coefficient of solid Ar (solid line) has been measured from 25 to 500 eV. The film thickness has not been measured directly and the normalisation has been made by setting equal the integrated oscillator strength of gaseous and solid Ar. On the basis of a lattice constant of 5.31 ÅU (fcc lattice) [1] the value for the exponential absorption coefficient \(\mu \) is given for solid Ar on the right-hand scale.

We see that the overall behaviour of the absorption
cross section of solid Ne and Ar can be described by the atomic approximation. In the X-ray range the energy dependence of the absorption coefficient can normally be described by an hydrogen-like behaviour as

$$\sigma(E) = E^{-\alpha} (\alpha = \text{const.})$$

(1)

excluding the vicinity above thresholds for inner shell excitations, where the fine structure occurs. In Ar one sees at 250 eV clearly the onset of 2p-transitions and the decrease of the absorption coefficient according to Eq. (1), beginning at some ten eV above the 2p-threshold. For the 3p-transitions of Ar (threshold at \(\sim 16 \) eV) and the 2p-transitions of Ne (threshold at \(\sim 21 \) eV), however, the hydrogen-like behaviour according to Eq. (1) is only observable at energies \(> 150 \) eV. In the immediate vicinity of the thresholds the absorption is suppressed and delayed due to the balance between Coulomb potential and the \((l+1)/r^2\) term in the radial wave equation of the atom [29]-[31].

The striking difference of the 3p-spectrum in Ar compared with the 2p-spectra in Ar and Ne is the occurrence of the absorption minimum at 49 eV, which is followed by a maximum at 80 eV. This feature is connected with the so-called resonance near threshold [31]. It has been found to occur generally in the case of transitions from initial states in outer shells whose wave functions have nodes. (Therefore, the 2p-transitions do not show a minimum.) Since in this case the overlapping integral between initial and final state wave functions is always negative at threshold and positive at energies far above threshold, the matrix-element has to change sign at an intermediate energy. For Ar 3p \(\rightarrow \) d transitions this occurs near 50 eV, leading to the minimum of the absorption coefficient.

B. FINE STRUCTURE. — Neon. — Figure 4 shows details of the Ne spectrum in figure 2 between 25 and 70 eV. The asymmetric lines in the spectrum of gaseous Ne are due to 2s \(\rightarrow \) np transitions. We have not measured the gas pressure in this case. The curve was fitted to Samson's values [40]. The spectrum of the solid shows asymmetric absorption lines [35], but they are broader and are shifted to higher energies in comparison with the gas lines. Below 45 eV, where the gas spectrum is flat, many structures can be seen in the spectrum of the solid. They are obviously due to transitions from the valence band and caused by the density of states of the conduction band. It is not clear whether the structure above 50 eV is also due to 2p- or to 2s-transitions. A detailed discussion of the 2p-transition structure in view of recent energy band calculations by Rössler [25] is beyond the scope of this paper.

Argon. — In figure 3 one sees window lines in the absorption curves [35] of solid Ar near 27 eV, where Madden et al. [28] have found lines of similar shape for gaseous Ar. As in Ne, the general character of the Ar lines is preserved but they are broadened and shifted to higher energies. These lines are ascribed to 3s \(\rightarrow \) np transitions.

Figure 5 shows the fine structure of the 2p-transitions above 245 eV [50]. The absorption spectrum of gaseous Ar (dashed curve) is in agreement with other measurements [46], [51]-[53]. The absorption lines can be ascribed to 2p \(\rightarrow \) ns, np transitions, with corresponding peaks separated by the energy distance of the 2p spin-orbit splitting of the core state (2.03 eV).

The absorption spectrum of solid Ar (solid line) also shows many absorption peaks. Corresponding spin-orbit partners are labelled with primed and unprimed capital letters. Additionally the absorption spectra of different Ar-N\(_2\) alloys have been measured. If one adds N\(_2\) to Ar, the peaks B, B', E, D', etc. are broadened and shifted to higher energies. In a mixture of Ar : N\(_2\) = 1 : 9 the shift of B and B' to higher energies is 1 eV against the position in pure Ar. The peaks A and A' are not affected by alloying with N\(_2\), i.e. the double peak A' B in pure Ar is clearly separated into two peaks in the Ar-N\(_2\) alloy.

From this behaviour we conclude that all peaks
except of A and A’ depend on the variation of the density of states of the conduction band. We assume that the peaks A and A’ are Frenkel excitons, since they are not affected by the alloying and since they have their energy position and oscillator strength close to that of the first gas absorption lines (2p \rightarrow 4s).

As peak B is shifted to higher energies in the Ar-N₂ alloys, a small shoulder appears at about 246 eV. This could be due either to higher (n \geq 2) members of the exciton series or to the onset of interband transitions. In any case the threshold for 2p interband transitions is expected to lie at about 246 eV. For a comparison with the 3p-transition we have separated the two components in the 2p absorption of solid Ar in such a way that only the contribution of one of the two spin orbit split 2p subshells is seen (Fig. 6, solid line). This is compared with the e₂ curve of 3p-transitions as derived from the reflectance measurements [8] by a Kramers-Kronig analysis (Fig. 6, dashed line). By adjusting both curves with their energy scales at thresholds for 3p and 2p-transitions, one recognizes obvious similarities in the position and width of peaks in both curves, while the 3p-spectrum drops more rapidly with increasing energy.

![Graph showing comparison of 2p and 3p transitions in solid Ar](image)

Fig. 6. — Comparison of the e₂ curve for 3p-transition in solid Ar (deduced from ref. [8]) (dashed line) with the absorption curve of 2p-transitions (solid line) unfolded for one subshell.

As the 3p valence band has a width of 1 eV (including spin orbit and crystal field splitting), the peaks are somewhat broader than those of the 2p spectrum. The relative adjustment of the 3p- and 2p-energy scales in figure 6 is in contrast to our former interpretation [8], where we have mainly considered the profiles of the 3p reflection exciton peaks. However, the Kramers-Kronig transformation of the 3p reflection data into e₂ leads to a different shape of the 3p curve near the onset. Furthermore, the newer 2p-transition measurements show more details than the previous results included in ref. 8.

The main feature of both spectra is the big maximum at about 1.8 eV above threshold and a shoulder at 2.5 eV, followed by a minimum near 3 eV. Another region of enhanced absorption is between 4 and 6 eV above threshold. This feature may be correlated with the band calculations of Rössler [25]. The maxima B and C (b and c) are probably due to transitions to the lowest conduction band maxima near L⁰ and X₋. The following maximum D corresponds to a transition into a flat conduction band part near Γ₊, which is 4.2 eV above the conduction band minimum at Γ₊. The peak E might correspond to transitions to critical points on the A- and Γ-line near 5 to 6 eV.

The agreement of our results with the calculations of Mattheis [20] and Lipari and Fowler [24] is not so good. Especially in the latter case there are no critical points in the conduction band which would correspond to the peaks at 1.8 eV and 2.5 eV above threshold.

Acknowledgements. — The first preliminary results of the 2p-absorption in gaseous and solid Ar were obtained together with C. Kunz. The authors are grateful to U. Rössler and N. O. Lipari for sending them their band calculations prior to publications and to E. E. Koch, U. Rössler and M. Skibowski for stimulating discussions. Thanks are also due to the Deutsche Forschungsgemeinschaft for financial support.

References

Mr. Jorgensen. — First of all, I would like to congratulate you to have verified directly the amount of oscillator strength in the noble gases, since its distribution on the individual shells is not a trivial problem.

Secondly, I would suggest a change of nomenclature in the sense most used by chemists. X-ray spectroscopists sometimes call the \((4l + 2) \) electrons having a given combination of \(n \) and \(l \) a sub-shell, and the \(2n^2 \) electrons a shell. However, the chemists call the separated groups of one, two or three orbitals originating in the partly filled shell of a transition group compound for a sub-shell (say the three and the two d-like orbitals in an octahedral complex) and they say \(nl \)-shell. One may also talk about relativistic \(j \)-sub-shells in spherical symmetry. Besides the smooth communication with chemists, the spherical symmetry of the combined electronic density of the \((2l + 1)\) orbitals speak for the word «shell».

Mr. Haensel. — We are aware of the fact, that one should not necessarily expect to find the exact number of subshell electrons in \(N_{\text{eff}} \) the number of electrons be effective in optical absorption of limited energy ranges. However our results for Ne as well as our results for the metals (see paper by Kunz in this proceedings) always give saturation at the numbers of subshell electrons well within the experimental error.

Collie. — Have you any information about the crystalline structure of your samples?

In fact the fault energy is very low in this type of solids and diffraction patterns show often a great mixture of face centered cubic and hexagonal structures. Recent band structure calculations have been published by Ramirez and Falicov for the two phases of Argon (fcc and hcp) which show quite striking differences. Have you observed any change in your absorption spectra which can be related to this phenomenon?

Mr. Haensel. — As we found the absorption spectra of all solid rare gases to be different if we evaporate at a temperature close to sublimation temperature (55 K for Xe, 40 K for Kr, 20 K for Ar and 8 K for Ne) or at 4.2 K we checked whether this could be due to different crystalline modifications in electron diffraction measurements however we have only seen fcc structure.