PARAMAGNETIC RESONANCE SPECTRA OF 4d AND 5d TRANSITION ELEMENTS

W. Low, S. Maniv

▶ To cite this version:

W. Low, S. Maniv. PARAMAGNETIC RESONANCE SPECTRA OF 4d AND 5d TRANSITION ELEMENTS. Journal de Physique Colloques, 1971, 32 (C1), pp.C1-937-C1-938. <10.1051/jphyscol:19711335>. <jpa-00214369>

HAL Id: jpa-00214369
https://hal.archives-ouvertes.fr/jpa-00214369
Submitted on 1 Jan 1971

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PARAMAGNETIC RESONANCE SPECTRA
OF 4d AND 5d TRANSITION ELEMENTS

W. LOW and S. MANIV
Microwave Division, Department of Physics,
The Hebrew University of Jerusalem, Israel

Abstract. — The paramagnetic resonance spectra of Nb$^{4+}$, W$^{5+}$, Mo$^{3+}$, and Tc$^{4+}$ and Re$^{4+}$ in the cubic field in K$_2$PtCl$_6$, Cs$_2$ZrCl$_6$ and (NH$_4$)$_2$PtCl$_6$ was measured in detail. The spectrum of Γ_8 state was carefully plotted out and compared with theory.

We briefly report measurements on the 4d and 5d transition elements in the crystal field of Cs$_2$ZrCl$_6$. Among the elements that were studied in detail are Nb$^{4+}$ and W$^{5+}$, Mo$^{3+}$, Tc$^{4+}$ and Re$^{4+}$. Some of these elements were studied in similar crystal fields such as K$_2$PtCl$_6$ and (NH$_4$)$_2$PtCl$_6$ as well as Cs$_2$HfCl$_6$.

The ions Nb$^{4+}$ and W$^{5+}$ have similar electronic structure, 4d1 and 5d1 respectively. Their spectra were studied in the crystal field of Cs$_2$ZrCl$_6$. Both spectra can be explained to arise from the paramagnetic ion taking the place of the Zr$^{4+}$ ion. However, the spectrum consists of the superposition of three spectra corresponding to three ions per unit cell, with a tetragonal distortion along the cubic axes.

The spectrum can be described by the spin Hamiltonian:

$$\mathcal{H} = g_{\parallel} \beta H_z S_z + g_{\perp} \beta (H_x S_x + H_y S_y) + AS I_z + B(S, I_x + S_y I_y)$$

with parameters:

- Nb$^{4+}$: $g_{\parallel} = 1.9184 \pm 0.0006$
- W$^{5+}$: $g_{\parallel} = 1.8113 \pm 0.0005$

$$|A| = 124.7 \pm 0.5 \times 10^{-4} \text{ cm}^{-1}$$
$$|B| = 63.1 \pm 1.5 \times 10^{-4} \text{ cm}^{-1}$$
$$S = 1/2, \quad I = 1/2.$$
\[\mathcal{H} = \beta \left[S^{(1)} H^{(1)} + S^{(1)} H_0^{(1)} - S_0^{(1)} H_0^{(1)} \right] +
+ u \beta \left[H_0^{(1)} \left(\frac{1}{2} S_3^{(1)} + \frac{1}{2} \sqrt{\frac{3}{5}} S_1^{(3)} \right) \right] + H_1^{(1)} \left(\frac{1}{2} S_3^{(3)} + \frac{1}{2} \sqrt{\frac{3}{5}} S_1^{(3)} \right) \right] + \sqrt{\frac{2}{5}} H_0^{(1)} S_0^{(3)} \right] \]

Where the \(S^{(m)}, I^{(m)} \) and \(H^{(m)} \), are the \(n \)-th components of the irreducible operators of order \(m \), constructed from the vector operators \(S, I \) and \(H \) \[^3\].

In the case of \(Cr^{3+} \) and \(V^{2+} \), \(|A| > |U| \), \(|g| > |u| \) and the angular dependence is very small \[^4\]. In the case of \(Re^{4+} \) and \(Tc^{4+} \), \(|A| > |U| \), \(|g| > |u| \), and the angular dependence is more prominent \[^2\].

The spectrum of \(Tc^{4+} \) in \(K_2PtCl_6 \) was studied in detail. The angular dependence was determined and the relative intensities of the lines were measured. The following parameters were found:

Table I

Comparison between the parameters of the \(\Gamma_3 \) Hamiltonian for \(Re^{4+} \) (5d\(^3\)), \(Tc^{4+} \) (4d\(^3\)), and \(Cr^{3+} \) (3d\(^3\)) for octahedral symmetry

<table>
<thead>
<tr>
<th>Host and ion</th>
<th>(T (\text{K}))</th>
<th>(g)</th>
<th>(u/g)</th>
<th>(U/A)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_2PtCl_6): (Re^{4+})</td>
<td>...</td>
<td>1.815 ± 0.001</td>
<td>(-7.2 \pm 0.5) \times 10(^{-3})</td>
<td>(-9.8 \pm 0.3) \times 10(^{-2})</td>
<td>(a)</td>
</tr>
<tr>
<td>(K_2PtCl_6): (Tc^{4+})</td>
<td>4.2</td>
<td>1.989 ± 0.005</td>
<td>(-1.0 \times 10^{-4})</td>
<td>(-8.9 \sim 0.1) \times 10(^{-3})</td>
<td>(b)</td>
</tr>
<tr>
<td>(MgO): (Cr^{3+})</td>
<td>290</td>
<td>1.980 ± 0.005</td>
<td>\sim 0</td>
<td>\sim 0</td>
<td>(c)</td>
</tr>
</tbody>
</table>

\(^{(b)} \) This work.

\(^{(c)} \) W. Low, *Phys. Rev.*, 101, 1827 (1956), and also other data (to be published).

References