MAGNETOOPTICAL PROPERTIES OF ORTHOFERRITES AND GARNETS IN INFRARED

M. Chetkin, A. Shalygin, Yu. Scherbacov, A. Ahutkina, S. Medvedev, A. Chervonenkis

To cite this version:

HAL Id: jpa-00214117
https://hal.archives-ouvertes.fr/jpa-00214117
Submitted on 1 Jan 1971

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
MAGNETOOPTICAL PROPERTIES OF ORTHOFERRITES AND GARNETS IN INFRARED

M. V. CHETKIN, A. N. SHALYGIN, Yu. I. SHERBACOV, A. I. AHUTKINA,
Moscow State University
S. A. MEDVEDEV, A. Ya. CHERVONENKIS
Moscow Energetical Institute, Moscow, U. S. S. R.

Résumé. — Les propriétés magnéto-optiques de YFeO₃, EuFeO₃, DyFeO₃ et DyIG sont étudiées dans l'infrarouge. La rotation Faraday de YFeO₃ est estimée à partir de |ε₁|. La valeur calculée de cette rotation est 700 °/cm à λ = 1,15 μ. Le résultat expérimental est en accord avec cette estimation. La rotation Faraday du DyIG est isotrope entre 80 et 293 °K et le facteur g du Dy⁺³ est égal à la valeur pour Iron libre. On utilise l'équation de mouvement du moment magnétique avec un facteur g anisotrope pour interpréter la rotation Faraday à 25 °K.

Abstract. — Magneto-optical properties of the YFeO₃, EuFeO₃, DyFeO₃ and DyIG were investigated in infrared. The non-diagonal component |ε₁| of the dielectric constant are large enough. Faraday Rotation (F. R.) along optical axis of YFeO₃, was estimated from the value |ε₁|. The calculated value of this rotation is equal to 700 °/cm at λ = 1.15 μ. The experimental value is — 600 °/cm. The F. R. in DyIG is isotropic at 80-293 °K and g-factor Dy⁺³ equals its free ions value. The equation of motion of the magnetic moment with anisotropic g-factor is used for interpretation F. R. at 25 °K.

Orthoferrites, like ferrite garnets, have a transparency window in the infrared [1]. The transparency of the orthoferrites has been used for observing the domain structure [1, 2]. The polar Kerr effect of orthoferrites in the visible was investigated in [3, 4]. Using the transparency of the single crystals, we have investigated magnetooptical properties of orthoferrites YFeO₃, EuFeO₃ and DyFeO₃ [5]. The single crystals orthoferrites were grown by means of the technique of zone melting with optical heating [6]. Figure 1 gives ratio 2δ/Ido(λ) in YFeO₃ plate 102 μ thickness cut in the {001} plane. Here 2δ is the change in intensity of radiation I passing through the system when the current in the electromagnet is switched. The electrical field of the incident radiation coincides with the axis <100>. The analyser was rotated by 45° from <100>.

For all thicknesses of the specimen the quantities 2δ/Ido are the same for the same value of wavelength. In birefringent crystals the Faraday rotation can only occur along the optical axis [7]. In the directions which do not coincide with the optic axis the angle χ = δ/2Ido which defines the orientation of the major axis of the ellipse with respect to direction of polarization of the incident light, can be written in the following form [8].

\[\tan 2\chi = -2k \sin \Delta = \frac{2\pi \Delta n}{\lambda} \] \(\Delta n \) = birefringence,

\[G_{33} = \frac{\epsilon_{33}}{\epsilon_0}, \quad \epsilon_{12} = -i(\epsilon_1 - i\epsilon_2), \]

\(\epsilon_{12} \) is the non-diagonal component of the dielectric constant tensor, \(\epsilon_0 \) is the diagonal component, \(d \) is the thickness of the plate, \(\lambda \) is the wavelength. From the « period » of the changing \(\chi \) we get

\[\Delta n = (3.6 \pm 0.3) \times 10^{-2} \text{ at } \lambda = 1.15 \mu, \]

\[\Delta n = (3.5 \pm 0.3) \times 10^{-2} \text{ at } \lambda = 1.8 \mu, \]

\[\Delta n = (2.9 \pm 0.3) \times 10^{-2} \text{ at } \lambda = 6 \mu. \]

Birefringence of YFeO₃ is large comparable with birefringence of the CaCO₃.

The inset figure 1 shows |ε₁| of YFeO₃, obtained with the help of (1). The values of |ε₁| are large enough, as in visible [3, 4]. The orthoferrites crystallize in an orthorombically distorted perovskite structure belonging to the two-axis crystals. The optical axis of YFeO₃ lies in the {100} plane and makes with the axis <001> the angle of 40°. That is very convenient to receive large F. R. The value of F. R. may be estimated from |ε₁| and the angle between the optical axis and <001>. For example, F. R. is equal to 700 °/cm at λ = 1.15 μ. The experimental value is — 600 °/cm. This F. R. is higher than in YIG. In direction that doesn’t coincide with the optical axis, the value \(\chi \) is small; \(\chi = 0.4° \) and 1.3° at \(\lambda = 1.15 \mu \) and 0.63 μ respectively. Curves similar to those of figure 1 were obtained for other orthoferrites. Birefringence of the orthoferrites is proportional to its orthoromobically distortions. For example, in EuFeO₃ at

![Fig. 1. — Relative change in the intensity of the radiation 2δ/I passing through the YFeO₃ of thickness 102 μ when the current in the electromagnet is switched as function of the wavelength.](image-url)
MAGNE TOOPTICAL PROPERTIES OF ORTHOFERRITES AND GARNETS IN INFRARED C 1 - 797

\[\lambda = 1.15 \mu \Delta n = (2.2 \pm 0.2) \times 10^{-2} \text{ and } \chi = 0.60. \]

The curves \(\chi(\lambda) \) in the vicinity of the absorption bands have some peculiarities [9].

In papers [10] was found the frequency independent Faraday effect \(\alpha_{F0} \) which exists due to the magnetic permeability in the optical frequency. It was shown that the F. R. in DyIG at 80-293 K is isotropic [11] and the values \(\alpha(\lambda) \) may be written in the form [10-12]:

\[
\alpha_p = \frac{\pi \sqrt{g_\text{e}}}{m e^2} (g_{R1} I_{R1} + g_{R2} I_{R2}) + \frac{k}{\lambda^2} \cdot (2)
\]

Here the first member is \(\alpha_{F0} \); \(g_{R1}, g_{R2}, I_{R1}, I_{R2} \), are the g-factor and the magnetizations of \(\text{Fe}^{3+} \) and \(\text{Dy}^{3+}, \)

\[\sqrt{g} = n \text{. The } g\text{-factor of } \text{Dy}^{3+} \text{ ion obtained from the value } \alpha_{F0} \text{ equals its free ion value.}
\]

The result of the investigation of the F. R. of oriented DyIG single crystals at 25 K in magnetic field \(H = 12 \text{ kOe} \) is represented in figure 2. From these results and (2) we obtain:

\[
\begin{align*}
\alpha_{F0}^{111} & = 180 \pm 10^9 \text{cm;} \\
\alpha_{F0}^{100} & = 120 \pm 10^9 \text{cm;} \\
\alpha_{F0}^{<100} & = 140 \pm 10^9 \text{cm}.
\end{align*}
\]

Along the \(<110> \) direction was found the birefringence [13, 14] which varies from \(\Delta n = 1.1 \times 10^{-3} \) at \(\lambda = 3.5 \mu \text{ up to } \Delta n = 0.95 \times 10^{-3} \text{ at } \lambda = 6.6 \mu \text{. In this case the value } \alpha_{F0} < 110 > \text{ was calculated using (1).}

From the values \(\alpha_{F0} \) and (2), using the magnetization data [15], may be determined \(g_{R1} < 111 > = 1.55 \pm 0.1, g_{R2} < 100 > = 1.8 \pm 0.1, g_{R3} < 110 > = 1.4 \pm 0.1. \)

To obtain these values \(\alpha_{F0} \), the values \(\alpha_{F0} = 1, \sqrt{2}, \sqrt{3} \) were introduced in (2) for the \(<111>, <110>, \) and \(<100> \) directions respectively. It is not excluded that anisotropic \(\alpha_{F0} \) is due to the difference of values of \(\alpha_{F0} \) from those mentioned above. In this case it must vanish in the high magnetic fields.

The interpretation \(\alpha_{F0} \) at 80-293 K mentioned above is based on using the Landau-Lifshitz equations with anisotropic g-factor. At low temperature one must take into account that local symmetry of rare-earth ions is not cubic. In this case we must employ the equations of motion of magnetic moment with anisotropic g-factor. Using the Vlasov’s and Yshumahetov’s equations [16] and taking account of the six non-equivalent positions of the rare-earth ions in the unit cell, one obtains:

\[
g_{R} = \frac{g_{11}^2 g_{22}^2 + g_{12}^2 g_{33}^2 + g_{11} g_{33}^2}{3 g_{11} g_{22} g_{33}} \cdot (3)
\]

along over all directions of the crystal. In (3) the \(g_{11}, g_{22}, g_{33} \) are the principal values of g-tensor. When \(g_{11} = g_{22} = g_{33} = g_{R} \) then \(g_{R} = g_{R} \). If \(g_{11} \neq g_{22} \neq g_{33}, g_{R} \neq g_{R} \) and this is observed on the experiment for \(<111> \) direction.

Allowance for non-colinear sublattices [17] within the Wolf’s model [18] doesn’t lead to anisotropic \(\alpha_{F0} \) under condition of the equal magnetic moments of the rare-earth ions in unequalvivalent positions.

References