MAGNETIC ANISOTROPIC BEHAVIOUR OF RbNi1-xCoxF3
G. Elbinger, E. Jäger, W. Keilig, R. Perthel

To cite this version:

HAL Id: jpa-00214038
https://hal.archives-ouvertes.fr/jpa-00214038
Submitted on 1 Jan 1971

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
MAGNETIC ANISOTROPIC BEHAVIOUR OF RbNi$_{1-x}$Co$_x$F$_3$

G. ELBINGER, E. JÄGER, W. KEILIG and R. PERTHEL
Zentralinstitut für Festkörperphysik und Werkstoffforschung der DAW, Institut für magnetische Werkstoffe Jena, GDR

Résumé. — On a déterminé les valeurs à 87 °K de K_1, K_2 et de l'aimantation saturation des composés RbNi$_{1-x}$Co$_x$F$_3$ ($0 \leq x \leq 0.20$). L'aimantation saturation présente une anisotropie prononcée. Les variations de K_1 et K_2 en fonction de H sont analogues à celles observées par Suits et al. A l'aide d'un modèle de champ cristallin à un ion on a calculé pour RbNiF$_3$ les constantes K_1 et K_2 et l'aimantation saturation. Pour celle-ci l'accord avec la valeur mesurée est bon, alors que pour K_1 et K_2 on obtient seulement l'ordre de grandeur. Pour RbNi$_{1-x}$Co$_x$F$_3$, la distribution des cations étant inconnue, on ne peut pas obtenir de résultats quantitatifs.

Abstract. — K_1, K_2 and the magnetic moment were measured on RbNi$_{1-x}$Co$_x$F$_3$ ($0 \leq x \leq 0.20$) at 87 °K by means of magnetization and torque curves. The magnetic moment shows a pronounced anisotropy. The K_1 and K_2 values as a function of x show the same behaviour as observed by Suits et al. but the quantitative agreement is not good. By a one ion crystalline field model it is possible to calculate for RbNiF$_3$ K_1 and K_2 values which agree in sign and magnitude and μ-values which agree quantitatively with the experimental values. For RbNi$_{1-x}$Co$_x$F$_3$ the unknown cation distribution does not allow quantitative calculations.

I. Introduction. — In the course of a study of the anisotropic magnetic properties of d^5-ions in magnetic compounds with various crystal structures we performed magnetization and anisotropy measurements on hexagonal fluorides of the composition

RbCo$_2$Ni$_{1-x}$F$_3$ ($0 \leq x \leq 0.2$)

in order to compare magnetic moment and anisotropy values with those obtained by a one ion crystalline field model. Single crystal samples were prepared either by the well-known combination of chemical reaction and flux melt [1]

$$3 \text{RbHF}_2 + (1-x)\text{NiCl}_2 \cdot x\text{CoCl}_2 =$$

$$= \text{RbNi}_{1-x}\text{Co}_x\text{F}_3 + 2 \text{RbCl} + 3 \text{HF}$$

or by the Bridgman-Stockbarger method. The Co : Ni ratio was determined by usual chemical analysis procedures. Magnetization and anisotropy measurements were made ballistically in different crystallographic directions and also by the torque method in the (1010) plane as a function of field strength at $T = 87$ °K. The maximum field strength for the magnetization measurements was 30 kOe and for the torque measurements 21 kOe.

II. Experimental Results. — The magnetization curves show besides a large crystal anisotropy a pronounced anisotropic behaviour of the magnetic moment especially for $x < 0.05$ and $x > 0.15$ (e.g. Fig. 1 for $x = 0$). Between $x = 0.05$ and $x = 0.15$ the anisotropic effects are smaller, due to the change of the easy magnetization axis from the a-plane to the c-axis. In order to interpret our measurements we start from the following expression for the free energy, assuming that the magnetic moment obeys the same symmetry relations as the magnetocrystalline energy [2, 3]:

$$\frac{1}{V} F = \frac{1}{V}(F_K + F_H) = K_0 + K_1 \sin^2 \theta + K_2 \sin^4 \theta - H M_{\text{sat}}(1 - k_1 \sin^2 \theta - k_2 \sin^4 \theta) \cos(\theta_0 - \theta) - \frac{1}{2} \chi H^2 \cos^2(\theta_0 - \theta)$$

(1)

K_1, K_2, k_1 and k_2 are the constants of magnetocrystalline anisotropy and anisotropy of magnetic moment resp., θ_0 and θ the angle between c-axis and H or M_x resp. and χ the differential susceptibility. By minimizing this expression with respect to θ we get the stable position of M_x for a given H and θ_0 and therefrom we can calculate the magnetization and torque curves in the well-known manner.

Neglecting k_2 both the experimental magnetization curves and torque curves can be fitted very well by the calculated curves based upon the same values of M_x, K_1, K_2, k_1 and χ. M_x and χ change only by a small amount, from 74 to 76 G and from 0.17 to 0.20 $\times 10^{-3}$ resp., in the studied composition range.

Fig. 1. — Magnetization curves for RbNiF$_3$ at 87 °K.
The dependence of K_1, K_2 and k_1 from the Co-content is shown in figure 2. Our K_1- and K_2-values do not agree well with those obtained by Suits et al. [3]. The discrepancy in the anisotropy constants for $x < 0.05$ and $x > 0.15$ may be due to the corrections which are caused by taking into account an anisotropy of magnetic moment. In the intermediate region we get, contrary to Suits et al., a monotonous change of the easy direction from the a-plane to the c-axis. This transition is field dependent. From eq. (1) follows for the cone angle θ_c

$$\sin \theta_c = \sqrt{\frac{-K_1 + HM_t k_1}{2(K_2 + HM_s k_2)}}.$$

(2)

Table I shows a comparison of calculated and measured θ_c-values for $x = 0.12$ at 4 different field strengths.

<table>
<thead>
<tr>
<th>H [kOe]</th>
<th>6.55</th>
<th>11.7</th>
<th>17.0</th>
<th>21.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_c, calc.</td>
<td>30.6°</td>
<td>25.3°</td>
<td>18.7°</td>
<td>10.4°</td>
</tr>
<tr>
<td>θ_c, obs.</td>
<td>26.8°</td>
<td>22.8°</td>
<td>18.6°</td>
<td>12.8°</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>K_1 [cm$^{-1}$/ion]</th>
<th>K_2 [cm$^{-1}$/ion]</th>
<th>μ_0 [mB]</th>
<th>μ_\perp [mB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiI</td>
<td>1.160</td>
<td>-0.004</td>
<td>2.396</td>
</tr>
<tr>
<td>NiII</td>
<td>-0.905</td>
<td>0.026</td>
<td>2.366</td>
</tr>
<tr>
<td>RbNiF_3</td>
<td>6.10×10^5</td>
<td>4.46×10^4</td>
<td>21.6</td>
</tr>
</tbody>
</table>

$||$ and \perp denotes parallel and normal to c-axis resp.

The values for RbNiF$_3$ were obtained by assuming that Ni = 1/3 NiI + 2/3 NiII and that the magnetic moments and therefore also H_x, H_y are directed oppositely for the two kinds of Ni$^{2+}$ ions. Sign and magnitude for K_1 and K_2 and the absolute value as well as the anisotropy of magnetic moment are in very good agreement with the experimental values.

The same calculations were performed for Co$^{2+}$. The results obtained are in good qualitative agreement with experiment. For example the K_1-values of CoI and CoII have the opposite sign and are one order larger compared with Ni. Unfortunately, the exact distribution of Co$^{2+}$ ions on the two different lattice sites in RbNiCo_xCoF$_3$ is not yet known, so that it is not worth calculating values for K_1, K_2 and the magnetic moments in different crystallographic directions.

Acknowledgements. — The authors are indebted to Mr. P. Rosemann for preparing the single crystals and to Mr A. Funke for the chemical analyses.

References