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ON THE RELATIVISTIC ATOMIC HAMILTONIAN 

H. T. W A D Z I N S K I 

Laboratoire Aime Cotton, C. N. R. S.-II, 91-Orsay, France 

Résumé. — L'hamiltonien relativiste d'un atome à plusieurs électrons est étudié de façon à 
expliciter les hypothèses de base et les approximations. A l'intérieur de la structure générale four­
nie par ces hypothèses, certaines approximations peuvent être partiellement levées par l'introduc­
tion de nouvelles corrections. 

Les hypothèses de base sont les suivantes : validité de l'électrodynamique quantique et possibi­
lité d'utiliser des potentiels effectifs pour réduire l'électrodynamique quantique à une forme hamil-
tonienne. Les ambiguïtés du potentiel obtenu au premier ordre sont discutées. Une autre cause de 
difficulté réside dans une définition précise des variables de position qui doivent être utilisées dans 
l'étude des interactions internes et externes. 

A partir de ces résultats, on peut construire un hamiltonien pour des noyaux possédant un spin 
bien défini. Cependant on préfère traiter le mouvement du noyau de façon non relativiste, ce qui 
permet de donner une description phénoménologique des moments nucléaires valable pour n'importe 
quel spin. 

Abstract. — The relativistic hamiltonian for a multi-electron atom is studied to make explicit 
the assumptions and approximations which enter into it. This will allow corrections to the approxi­
mations to be made as needed within the framework provided by the assumptions. 

The basic assumptions are the validity of quantum electrodynamics and the accuracy of using 
effective potentials to reduce quantum electrodynamics to hamiltonian form. The ambiguities of the 
potential obtained for the first order interaction are discussed. Another source of difficulty is in the 
precise definition of the position variables to be used for internal interactions and for interactions 
with external fields. 

Using these results a hamiltonian could be constructed for nuclei with a particular spin. Instead 
the nuclear motion is approximated non-relativistically allowing a phenomenological description 
of the nuclear moments which is valid for all spins. 

1. Introduction. — Atomic physics is starting to 
use a more complete relativistic formulation in its 
calculations. When working with the non-relativistic 
hamiltonian, there were relativistic corrections to 
the theory. The present relativistic hamiltonian may 
also need corrections. In order to understand when 
corrections might be needed and what they would be, 
the hamiltonian must be obtained by successive 
approximations from a theory which is as well founded 
as possible. 

In the following it is useful to distinguish between 
two types of approximations. The first type is mathe­
matically based on the theory being used. In this case 
the error can be estimated and the approximation 
improved through knowledge of the mathematics of 
the approximation. A truncated series is an example 
of this type. The second type of approximation is 
based on physical intuition and is usually used when 
there are unsolved mathematical problems in the 
way of a rigorous development. In this case the error 
cannot be estimated directly and the approximation 
usually cannot be improved. Hopefully, further work 
will change any such approximation into one of the 
first type. 

If the nucleus is treated as a simple particle, all 
interactions within the atom are electromagnetic [1]. 
This allows the theory of quantum electrodynamics 
to be the starting point of the description of an 
atom. Unfortunately even two-particle bound states 
are very difficult to handle in a rigorous fashion [2]. 
The assumption will be made that for the case of 
interest quantum electrodynamics can be translated 
into hamiltonian form through the use of effective 
potentials, where an effective potential is defined 
as that potential which when added to the free particle 
hamiltonian gives the same scattering results as 
quantum electrodynamics [3]. Scattering is used 
because of the intractability of the quantum electro-
dynamic bound state problem. This may be regarded 
as the second type of approximation mentioned 
above where the correction is assumed to be not just 
small but zero. The justification comes from the 
accuracy of the calculations for hydrogen done by 
Grotch and Yennie [3] and from a treatment of the 
Bethe-Salpeter equation by Gross [4]. 

The effective potential, like quantum electrodyna­
mics scattering calculations, is a power series in the 
fine structure constant, %. This series can be appro-
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ximated by the first term. The terms depending on 
higher powers of .A can be treated later as perturbations 
if desired [ 5 ] .  

Further approximations and difficulties are consi- 
dered in the following three sections. Section 2 dis- 
cusses the effective potential and some ambiguities 
in its definition. Section 3 examines the difficulties 
inherent in defining relativistic variables, particularly 
position. Section 4 outlines a semi-empirical treatment 
of the nucleus which is made possible by approximating 
the nuclear motion 11011-relativistically. The assump- 
tions are summarized in section 5 which contains the 
final hamiltonian. Appendix 1 discusses external 
interactions and the variables used to describe them. 
Some comments on nuclear form factors are included 
in Appendix 2. 

2. The Effective Potential. - The effective potential 
of interest is that one which describes the electroma- 
gnetic interaction of two pure Fermi particles, which 
have neither extent nor Pauli moments. This descrip- 
tion is correct only for leptons, whose anomalous 
magnetic moments are ascribable to higher order 
quantum electromagnetic effects. The modifications 
for the interactions of the nucleus will be described 
in Section 4. 

The interaction is to be approximated by the lowest 
order in 2 which is given by the exchange of a single 
virtual photon. Because of the close relation between 
the quantized and non-quantized forms of field theory, 
the effective potential can be directly written in 
momentum space [6]  : 

where (E, k) is the four-momentum of the exchanged 
photon and q, and cci are the charge and Dirac matrices 
for the it" lepton. 

The requirement of gauge invariance or charge 
conservation imposes the condition 

on all physical states [6]. This allows the potential 
to be rewritten in the form 

This form can be derived directly by quantizing only 
the transverse electromagnetic field and then writing 
the interaction as the sum of the Coulomb interaction 
(first term) plus the exchange of one transverse photon 
(second term). 

The usual three dimensional Fourier transforms are 
used to obtain the expressions for the interactions in 

configuration space. The significance of the variables 
will be discussed in the next section. The results are 

and 

[ a l 2 - 3 ( a 1 . ) ( a 2 . ) ] ( ~ ~ ) ,  (2.5) 

where 

O(ER) is determined by the contour in the complex 
k-plane with respect to the poles at + E. For scattering 
problems [7] a contour above (below) - E and below 
(above) + E transforms incoming (outgoing) plane 
waves into outgoing (incoming) plane-plus-spherical 
waves and 

O(&R) = e + ( - ) " R  (2.7) 

For bound states the poles are treated using the 
Cauchy principal value : 

This can be thought of as the average of the two 
scattering cases or as restricting the potential to be 
real [8]. For the bound state case 

where n ,  is a spherical Bessel function. 
The scattering form of VM(&, R) is frequently known 

as the M$ller interaction [9]. The bound state form 
of VIM(&, R) is mentioned by Bethe and Salpeter [8]. 
In the rest frame of the center-of-mass of the two 
interacting particles where 

E = 0 ,  

O(0) = 1 , (2.10) 

and 

?(O) = 3 ,  

vB(',(O, R) is the sum of the Coulomb and Breit 1101 
interactions. 

The difference between the two effective interactions 
given is 

AV(E, R)=VM-VB= 
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In  the casc wliere the states of'tlic s\steni arc products 
of independent one particle states. possibly defined in 
the presence of an external field, and the entire inter- 
action between the particles is treated as a pcrturba- 
tion, the matrix clemenls 01' All' arc identically zero. 
If part of tlie interparticle intcraction is used to define 
the initial states and the rest of the potential is treated 
by a perturbation expansion. then the choice of tlic 
form of' tlie potential may give quite direrent r e s ~ ~ l t s  
to any givcn order of the expansion ; although the 
limits are presumably the same. This latter situation 
is the casc in 1iydrc)gen where the Coulomb interaction 
defines the bound states and in Hartrec-Fock states. 
If the hyperfine structure of' hydrogen is calculated 
to first order i n  perturbation theory usi~lg states defined 
by the Coulomb interaction. the result is of the 
correct order of magnitude when V,, is used but is 
u - '  times too large using V,,. Also calc~llntions of 
energy levels and quantum electrodynamic effects 
give good results using V ,  [I I]. 

The general erective intcraction to first order in 
rs may be written 

where 3 is a n  arbitrary number \rhich may be chosen 
to give rapid convergence to a perturbation series. 
The cnlculntions nicntioned above [3] [ I l l  imply 
that tlie optinlum value is zero but these have been 
carried out I'or small % only. Whether a value of 3 

near zero is optimum for large Z as well remains to 
be answered. 

3. 'l'hc Definition of Variables. --  - The relations 
between momentum ~ l n d  ~ o s i t i o ~ i  in non-relativistic 
quantum mechanics are well understood. A given set 
of position and momentum variables are canonical 
if they obey the standard cornmutation relations : 

For  a system of 11 -t- I particles one possible set of 
canonical variables is the positions and momenta 
of the separate particles. A more useful set consists of 
the position and momentum of the center-of-mass 
plus a set of internal positions and momenta. The 
internal variables are difficult to define independently 
if all particles arc to be treatcd identically [12] ; but 
in the casc where one particle, e. g. the nucleus, is 
different from the others, a set of indepc~ldent non- 
relativistic center-of-mass canorlical variables can be 
defined : 

P = PN + CPj, (3 .2) 

Pote~~t i a l s  \vliich \\;ere derived in momentum space as 
functions 01' the morneritum transfer have a confi- 
guration space dependence on r, for the interaction 
between N and the i"' particle and on r, - rj for the 
interaction between the il" and jl" particles. 

'In the rclati~istic case many problems arise. The 
position canonical to the three-momentum of a 
particle [I31 is not part of a four-vector, depends on 
the f'lamc of reference. and depends on the spin of the 
particle in the frame of' reference. For a multiparticle 
system it is again ad\antageous to use the center-of'- 
mass plus interno1 variables but this problem has not 
been completely sol\-cd [I41 [15]. To  avc~id this difli- 
culty as long as possible we will define R i  and Hij 
to be the position variables appearing in tlie interac- 
tions bet\veen tlic nucleus and the it" electron and 
between the i'" and it'' electron respectively. The 
exact forms of' R ,  and K j j  will depend on the fi>rm ol' 
tlie relativistic internal variables. 

The exact solution 01' the two-particle case [I41 
~.xoduccs c l ~ ~ i t e  complex general expressions f'or the 
center-of-mass and intcrnal variables, which become 
the non-relati\ istic cxpressio~is i11 the center-of-~nass 
rest f'ranic. This suggests that the approximati011 of 
the relativistic internal variables by the non-relativistic 
ones is made better by restricting the system to the 
center-of-mass rest frame. With this restriction, 

and assuming the validity of  the approximation. we 
set 

and 

The method used to derive the potential has resulted 
in a dependence on c, the energy transfer, which can be 
taken to be the change in energy of either interacting 
particle [a]. This implies that enough of  the problcn~ 
has been solved to assign a value to c. This definition 
can be applied only to states where the particles arc 
independent enough to be assigned separate energies. 

Estimating c to have a maximum near the hydrogenic 
io~iization energy and R to be of tlie order o r  magni- 
tude of the Bohr radius, c R  is o r  the order of Zr. 
This suggests that a good first approximation. pnrti- 
cularly for Z small, is to set c to rero. The ditTcrcnce 
between this harniltonian and the haniiltonian depcn- 
dent on c could be treated as a perturbatio~i \ \ I I O W  
dependence on c could be appr(\\imutcd. in l u r n .  h! 
values obtained I'rom the :~pprc>xini:~te harnllron~:in. 
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Ilifficulties arise o n  evaluating non-diagonal matrix 
elements of the perturbation which d o  not conserve 
the total energy as defined by the approxiniate hamil- 
tonian. In such cases there are two possible values of r: 
depending on which of the two particles is used to 
define the (( p n c y q l  /rnn.sfi>r )). Fortunately this ambi- 
guity does not cause difficulty until the second order 
of perturbatio~l theory. 

4. 'The Nucleus. - The interactions discussed in 
section 2 were thr pure Fermi particles which d o  not 
have either anon~nlous  magnetic moments or extent. 
T o  describe a spin-: nucleon interacting with the 
electromagnetic field a Pauli term and form factors 
must be used [16]. In this fashion the interactions can 
easily be generalized to include a spin - -: nucleus. 

The nuclear motion can be approximated non-rela- 
tivistically. The order of magrliti~de of a relativistic 
correction to  this approximation may be estimated by 
writing : 

The quantity in parenthesis is roughly the total 
nuclear mass effect. a generous estimate of which is 
1 000 mk [17], giving lo-" mk for an estimate of this 
corl.ection. Since other correction terms and better 
evaluations of this term seem unlikely to change the 
estimate of the total correction by more than a few 
orders of magnitude, the corrections to the non- 
relativistic approximation of nuclear motion can be 
ignored in all cases as well below present experimental 
accuracy. 

The treatment of the nucleus may now be generalized 
by replacing the charge and magnetic moment of the 
nucleus by distributions centered on the position of 
the nucleus. These distributions may be defined 
empirically : 

where the barred quantities are operators acting on 
internal states of the nucleus. Although not indicated 
explicitly. the distributions depend on the initial and 
final nuclear states. These general distributions are 
included in the non-relativistic nuclear hamiltonian by 
the replacelne~lts : 

tonian to the non-relativistic limit. The charge and 
magnetic moment distributions are shown in this 
way to be the Fourier transforms of the relativistic 
form factors F, and G,,, [17]. This derivation also 
shows that the distributions can be expected to 
depend on the energy transfer. For the proton the 
relative error of ignoring this dependence is about 
(~1750 MeV)' [18]. 

This development may be carried further using 
spherical harmonics and radial functions. Some 
aspects of a purely empirical approach are discussed 
in Appendix 2. 

5. Conclusion. - The starting point for the rela- 
tivistic atomic hamiltonian was the hypothesis that 
the interactions are described by qilarltum electrody- 
namics. It was further assumed that in the atomic 
case qunntum electrodyna~iiics can be put in the form 
o f a  relativistic hamiltorlian with an effective potential. 
The effective potential was evaluated only to the first 
order in the fine structure constant. The nuclear 
motion was found to be very well approximated by 
the non-relativistic limit. With these conditions, in the 
center-or-mass rest frame, and in the absence of 
external fields the relativistic hamiltonian for an atom 
is 

The nuclear part which includes all interactions 
between the nucleus and the electrons is 

where q and m are the nuclear charge and magnetic 
moment distributions which are to be used as in (4.3). 
The use of the center-of-mass rest frame requires (3.7) 
and the other quantities are 

e ,. <. 
A, = - { [a, - (ai.Ki) R,] O(ci R i )  - 

Ri 

- [ a  - a , . ,  R ]  T ~ R ) } ,  (5 .4 )  

and 

C .  B(R)  - J p(p) .B(R - p) d 3 p .  The electron part of the hamiltonian, 

For a spin-; nucleus the distributions can be H, = x Hi + X P i j ,  
i <  j 

(5.6) 
obtained by starting in momentum space with the 
complete interaction including the relativistic form consists the  rela t ivis t ic  free e l e c t r o n  han,iltonians. 
I;ictors. going to configuration space by a Fourier 
transf;)rm. and reducing the nuclear part of thc hami!- 1-1, =. a , .  pi + p,  111 (5.7) 
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and the inter-electron interaction, - (m . VN x AC"(xN)) , (A1.2)  

,-, A + [ai.aj - 3(ai. R,,) ( a j .  Rij)] ricij R i j )  ) . (5 .8)  I/,'x' = - e { cpCx'(xi) - ai .  A'"' (xi)  } . (A1 .4) 

In these expressions the indices refer to the electrons 
and 0 and r are as defined in (2.8) and (2.9). 

In order to use the hamiltonian the relationships 
among the variables must be known. Approximating 
these non-relativistically leads to (3.81, (3.9), 
and (3.10). The dependence on the energy transfer, E ,  

may be approximated using first order pel-turbation 
theory based on states which are solutions of the 
hamiltonian obtained by setting the energy transfer to 
zero. The nuclear distributions are approximated by a 
point nucleus. 

Through the formalism of quantum electro- 
dynamics, charge conservation introduces a degree 
of freedom into the effective potential. The 
forms used above work well for calculations using 
perturbation theory when E is small. It is possible that 
for the more relativistic electrons of the heavier atoms 
a perturbation expansion will converge faster if the 
interactions are modified by the addition of 

The principal difficulty with the external interactions 
is with the external variables used while the rest of 
the hamiltonian uses internal variables. Even in the 
center-of-mass rest frame of a two particle system, 
the relativistic expression for the position of each 
particle does not reduce to a simple form but includes 
spin dependent terms [14]. 

The lowest order approximation would be to use the 
non-relativistic formulae for the absolute positions : 

Since the eigenfunctions of the relativistic position 
operators have a spread of about one Compton 
wavelength, this approximation should be fairly 
accurate if the external fields vary little within one 
electron Compton wavelength. 

An approximate relativistic correction to an electron 
position can be obtained by using the two-particle 
form of Osborn [I41 and treating the rest of the atom 
as the second particle : 

and - 

e2 
aij Ar/ij = nij - { Ri) - 11 - 

Ri j 
With this correction the external field is restricted 

,, .- to vary little within the order of a nuclear Compton 
- (ai.  Ri j)  ( a j .  R i j )  U(eij Ri j)  wavelength. However since our internal variables are 

A , , imperfectly defined, they may introduce a much 
- [ai.aj - 3(ai. Ri j)  ( a j .  Rij)] z ( E ~ ~  Rij) ) , larger error. 

where ai and aij are numerical constants whose values 
are chosen to enhance the rate of convergence of the 
perturbation series. 

Appendix 1. External Interactions. - In quantum 
electrodynamics external fields are treated as algebraic 
fields, not operators, which are included in the des- 
cription of ((.free )) particles, i. e. those which do not 
interact with each other [6]. This results in modifying 
the hamiltonian in the usual way : 

Appendix 2. Some Empirical Aspects of Charge and 
Magnetic Moment Distributions. - The charge 
and magnetic moment distributions to be discussed 
will be the general ones defined by (4.2j which interact 
with an clectromagnetic field as in (4.3). Treating the 
distributions as functions of position and using the 
modified spherical harmonics defined by Racali [19], 
they can be written : 

H' = HE, + HL , ( A l  . l )  



H. T. WADZINSKI C4-2 1 8 

where (- l ) k + "  
a(X+ll)(p) , ( ~ 2 . 6 )  qk(p) - 5 Q:") -- - 

1 n = o  (k + n) ! 4 ap2 ~ Z ( P )  = 1 C: 4 ( ~ )  dQp (A2.3) 
m 

(kl)," (- l)k+ll s ' ~ + ~ ' ( ~ ) ,  nz(")"(p) - M(,) -- - 
I I C ~ ) " ~ )  = & / { C" inf 1: d ~ ,  . n =  o (k + 11) ! 4 ap2 

(A2'4) where 
The general form of the magnetic moment distribu- d k+n 

tion can be somewhat simplified since the field it 6'*'")(p) = (-) 6(p) (A2.7) 
interacts with in (4.3) is the curl of another field [20]. dP 
In terms of this interaction two dipole distributions, m and 
and m', cannot be distinguished if 

V x (m-m') = O .  Q:, = 4 n [ pk+" qk(p) p' d p  , (A2.8) 
J 

These two distributions also produce the same magne- 
tic field. 

Let 
p2 dP - 

This allows the sum of K in (A2.2) to include only k 
and k - 1. 

The radial functions can be further reduced by 
going to the operator form. The use of reduced 
matrix elements eliminates the dependence of the 
radial functions on the magnetic quantum number, q, 
and also imposes limits on the rank, k, which depend 
on the initial and final nuclear states in (4.2j. The 
use of parity further reduces the number of radial 
functions. For example, if the initial and final nuclear 
states are identical and have spin S and parity is used 
then to be non-zero qh and n ~ ( ~ ' "  must have k < 2 S 
and k even and n ~ ( ~ - '  'I' must have k < 2 Sand k odd. 

In using these expansions the interactions (4.3) 
become integrals over p. Since the nuclear size is 
much smaller than the size of the atom, a Taylor 
expansion in p of the field may be expected to yield a 
series of rapidly diminishing terms. This Taylor 
expansion may be included symbolically in the dis- 
tribution through the use of 6-f~~nctions : 

This allows the nucleus to be treated as a point. 
If we can make the apparently reasonable physical 

assumption that at  least one of the two charge or 
dipole distributions, nuclear or electron, does not 
have any singularities in any of its derivatives at p = 0, 
then these formulae can be further simplified by using a 
three dimensional Taylor expansion instead of a 
radial one for p > 0. This corresponds to the standard 
multipole expansion [21]. In this case all terms of odd n 

are zero. However, many of the functions used to 
describe the distl-ibution have singularities at the 
origin. For example any function containing an expo- 
nential depending on an odd power of p has a singu- 
larity such as the relativistic [8] and non-relativistic [7] 
hydrogenic solutions, the Fourier transform of the 
relativistic proton form factors [I 81, and the standard 
Fermi liuclear charge distribution 1221. In any case 
the terms with M = 0 can be expected to be larger than 
the others. For these terms, the standard moments 
can be defined [21] : 
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